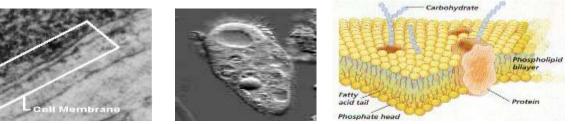

Biology STAAR EOC Review

4B

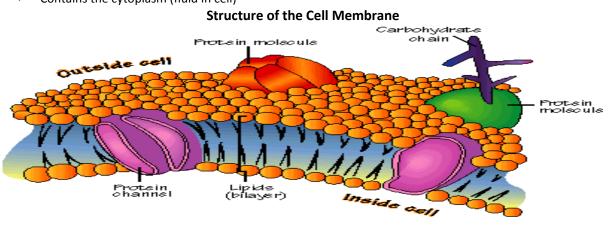
Investigate and explain cellular processes, including homeostasis, energy conversions, transport of molecules, and synthesis of new materials (RS)

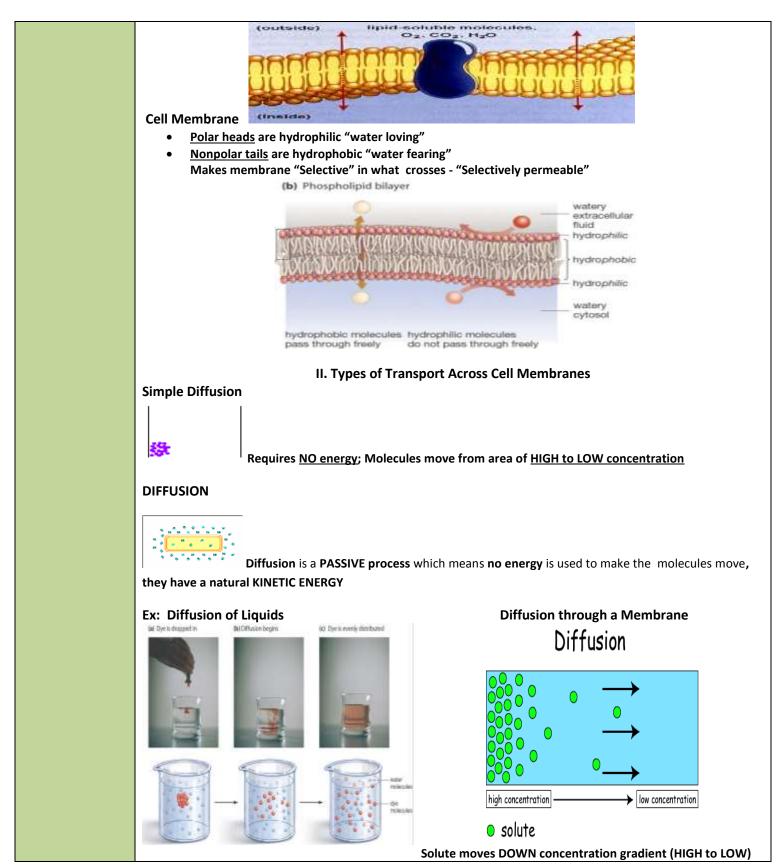

Cellular Processes

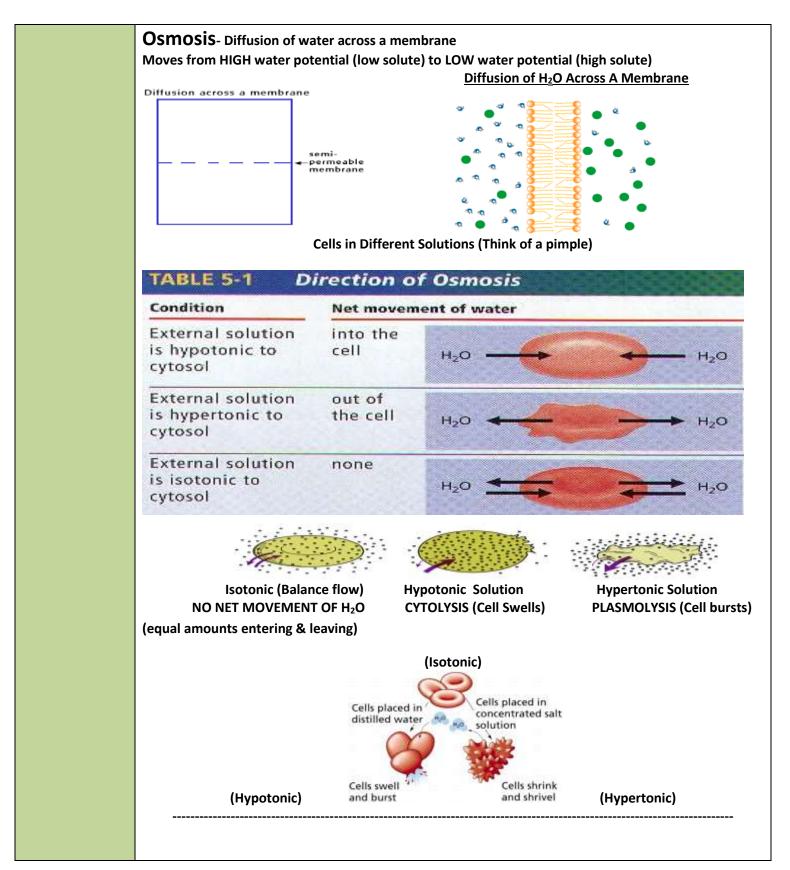
I. Homeostasis is a process by which organisms keep internal conditions relatively stable regardless of changes in the external environment. It is important because the processes that keep the cell alive can only take place under certain internal conditions.

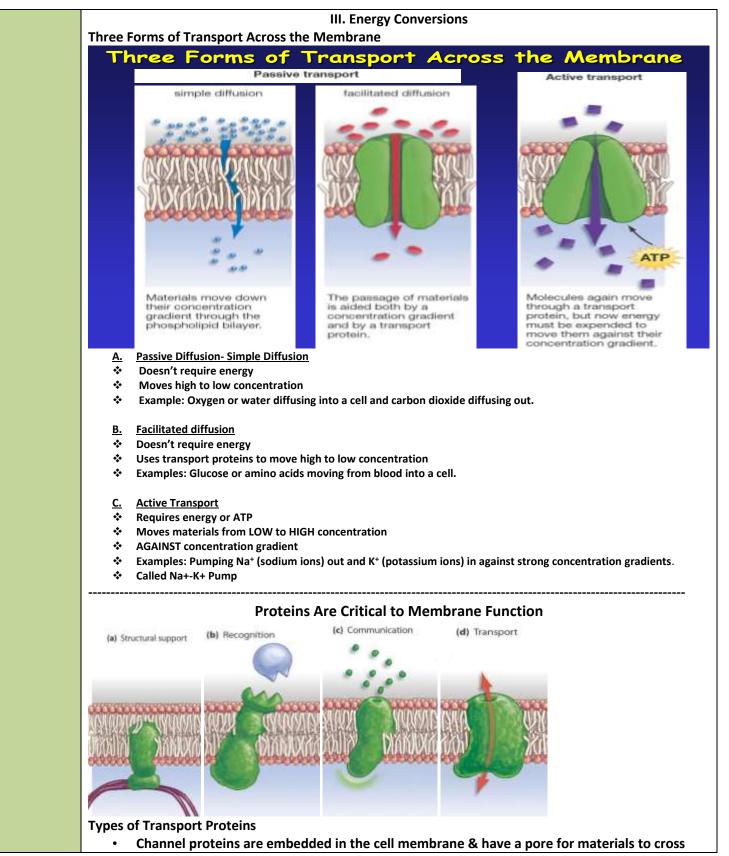
- Balanced internal condition of cells
- Homeostasis is also called equilibrium
- Maintained by plasma membrane controlling what enters & leaves the cell

Plasma or Cell Membrane

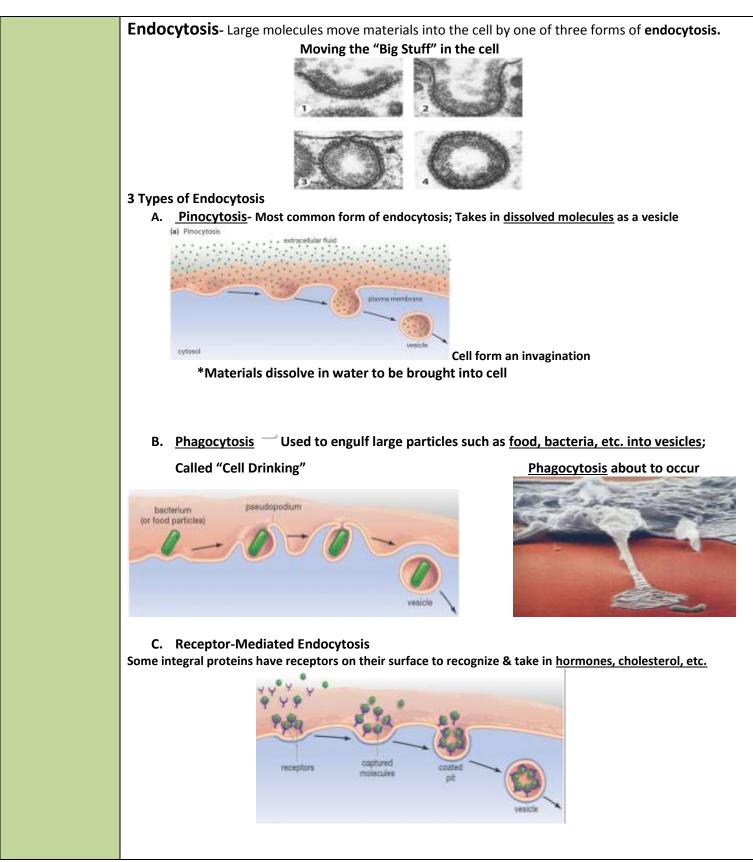

The cell membrane is flexible and allows a unicellular organism to move

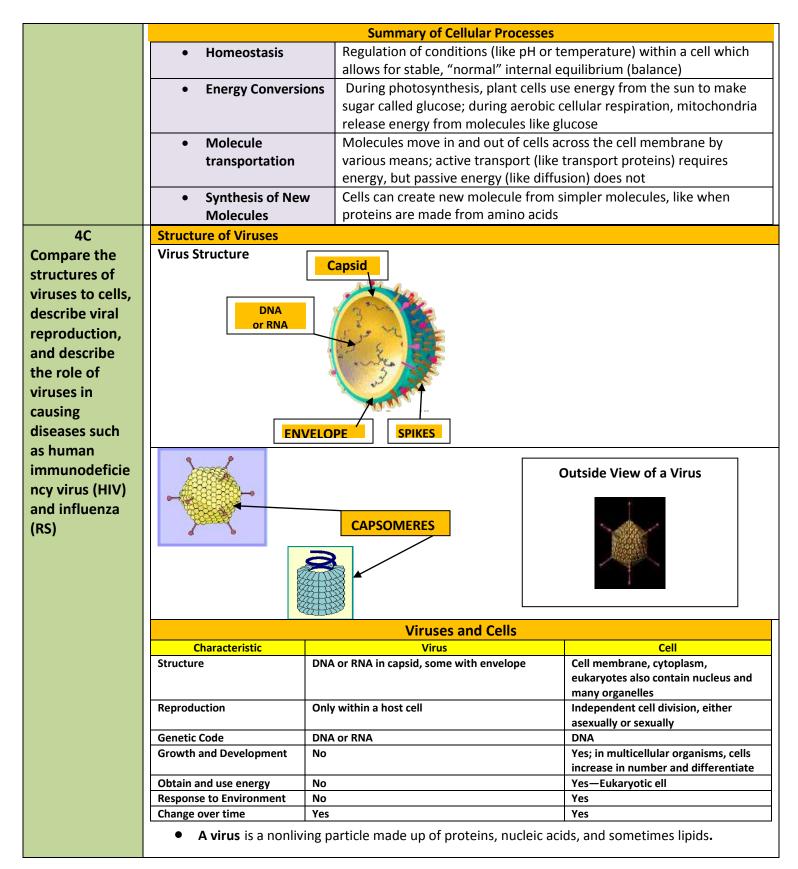


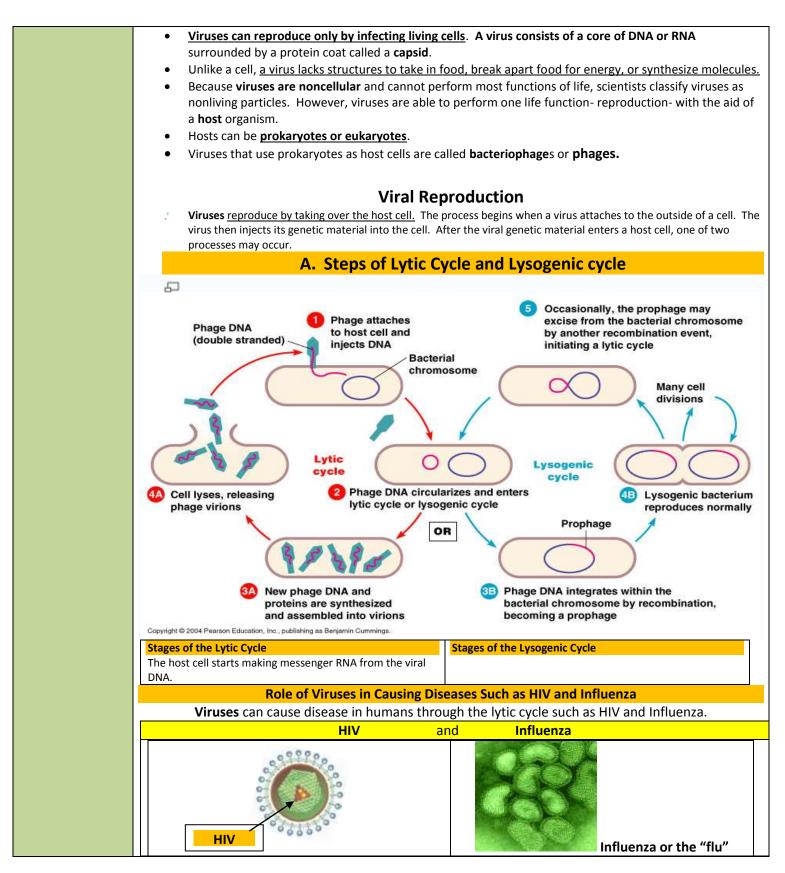

When you **transport** something, you move it from one place to another. Cells transport materials across the cell membrane.

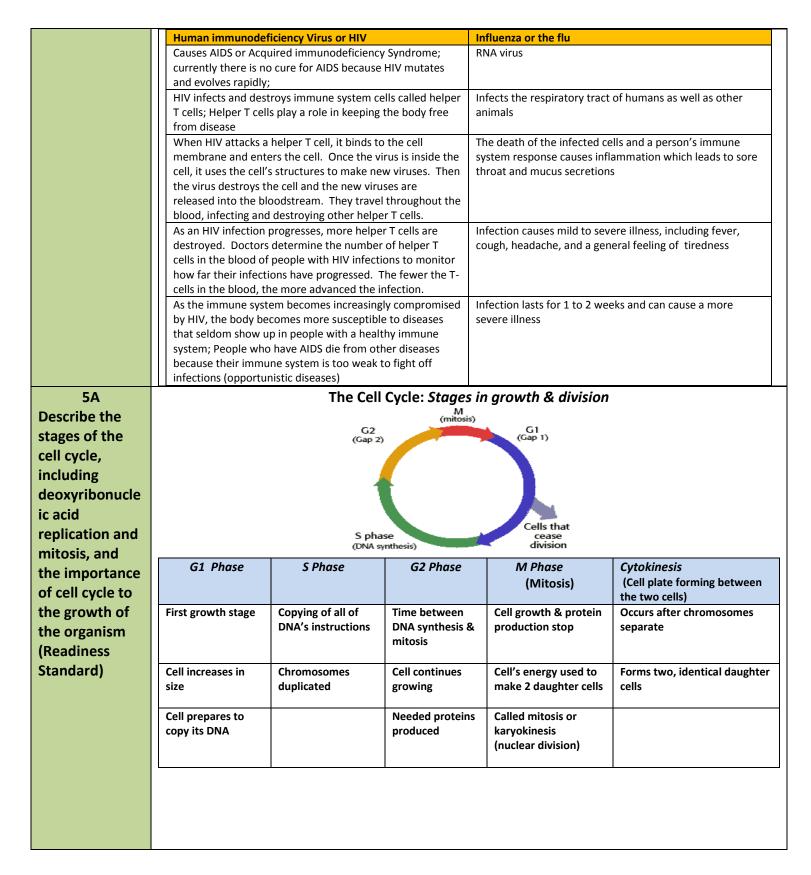

Functions (what they do) of Plasma or Cell Membrane

- ✓ Protective barrier
- Regulate transport in & out of cell (selectively permeable- only lets some things and out of the cell like a club bouncer; Specifically, small molecules and larger hydrophobic molecules move through easily. e.g.
 O₂, CO₂, H₂O; lons, hydrophilic molecules larger than water, and large molecules such as proteins do not move through the membrane on their own.
- ✓ Allow cell recognition
- ✓ Provide anchoring sites for filaments of cytoskeleton
- ✓ Provide a binding site for enzymes
- ✓ Interlocking surfaces bind cells together (junctions)
- ✓ Contains the cytoplasm (fluid in cell)

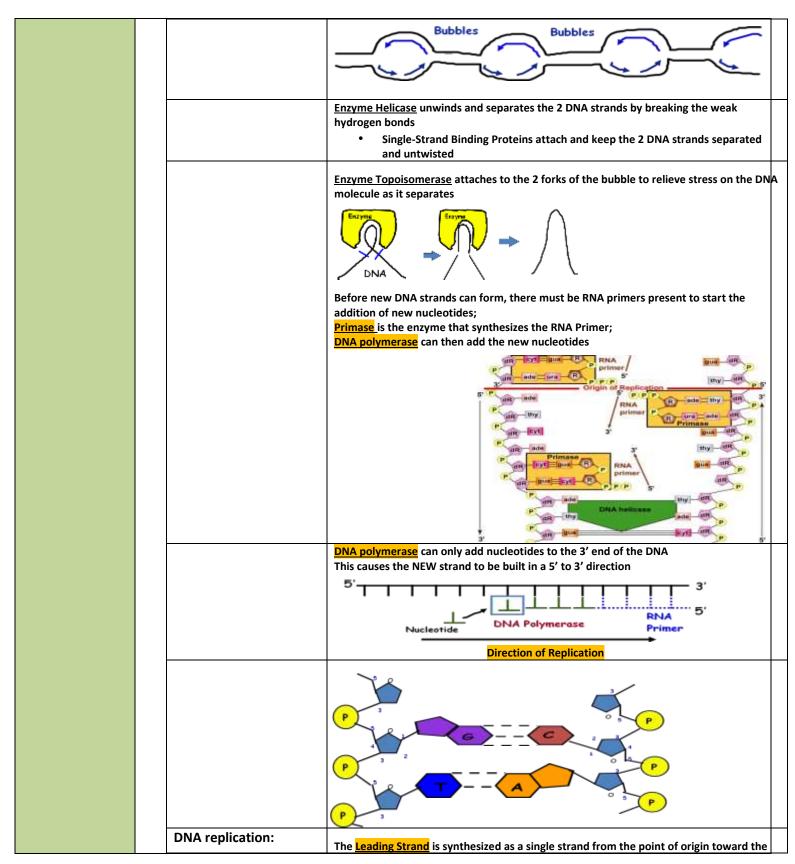


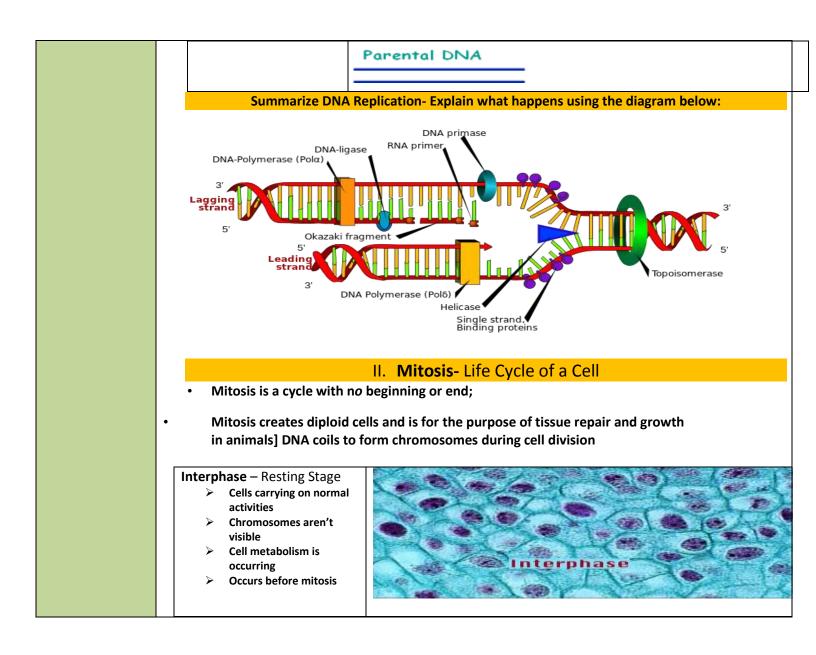


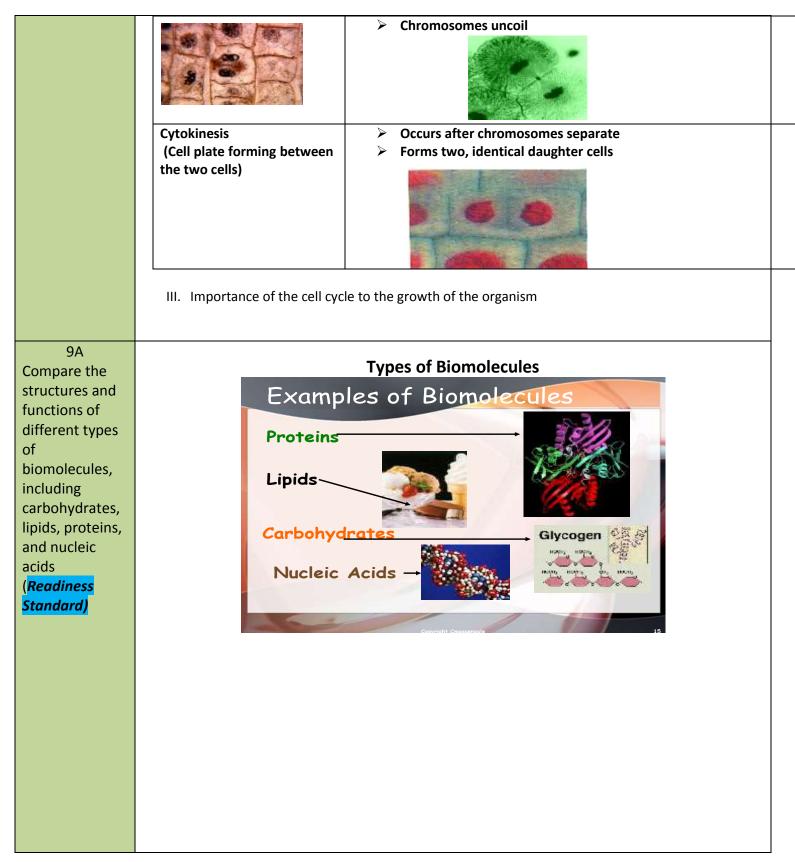


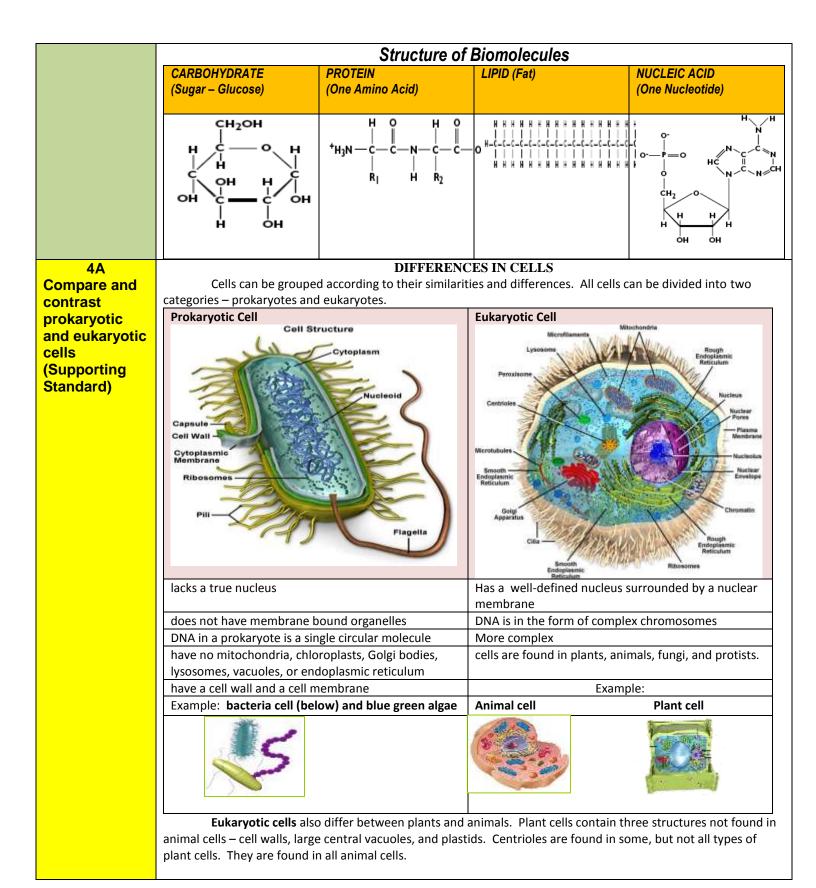


Carrier proteins can change shape to move material from one side of the membrane to the ٠ other **Facilitated Diffusion** Molecules will randomly move through the pores in Channel Proteins. Some Carrier proteins do not extend through the membrane. They bond and drag molecules through the lipid bilayer and release them on the opposite side. **Carrier Proteins** Other carrier proteins change shape to move materials across the cell membrane • Exocytosis - moving things out of the cell Molecules are moved out of the cell by vesicles that fuse with the plasma membrane. This is how many hormones are secreted and how nerve cells communicate with one another • Moving the "Big Stuff" Out in the Cell (a) Exocytosis extraceRular fluid

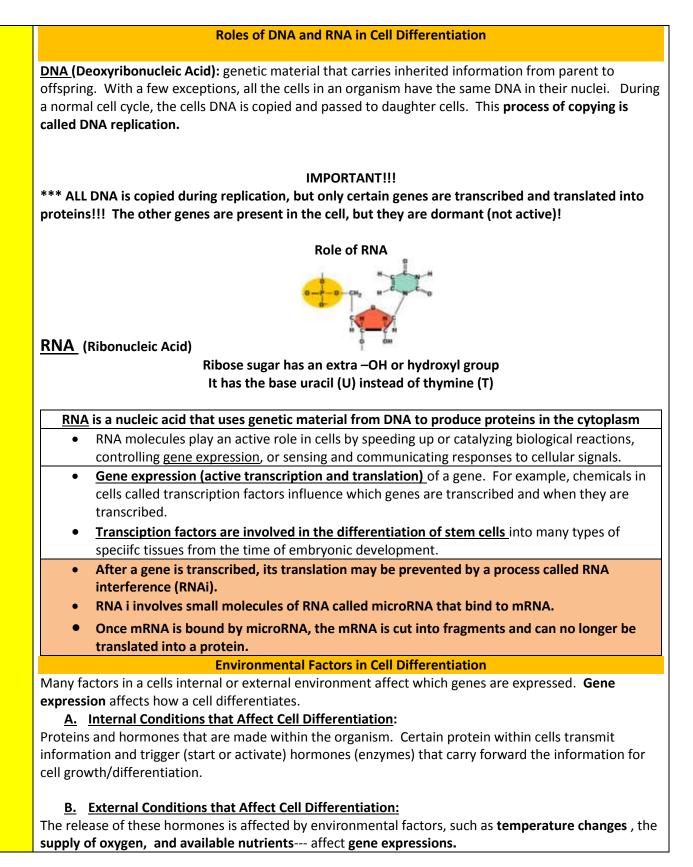


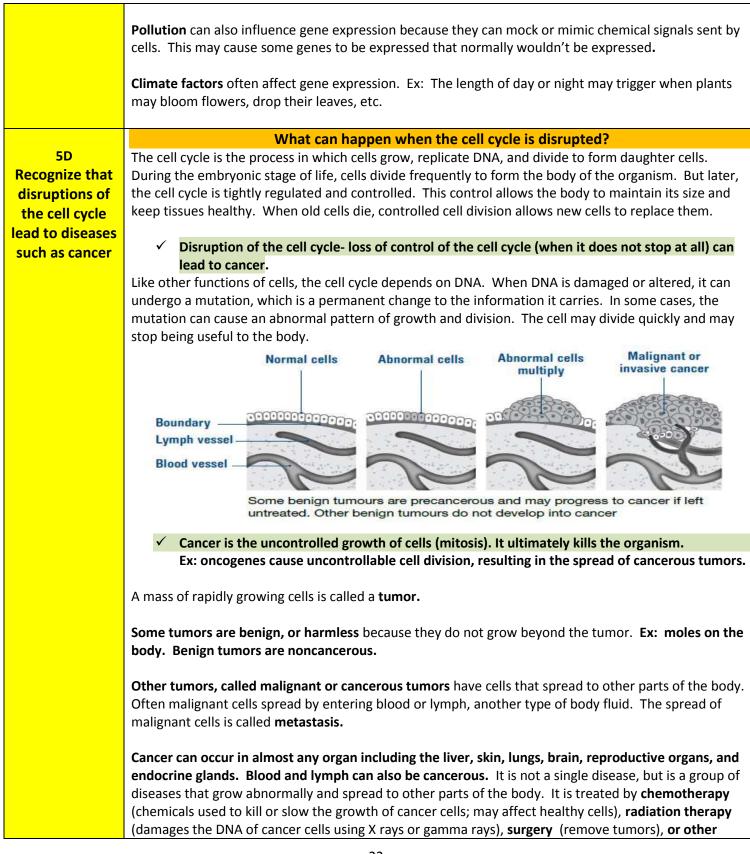



	I. DNA Replication
A process that transforms one DNA molecule into 2 identical copies; enzyme help DNA strands unwind and separates each DNA strand serves as a template (pattern) for a new, complementary strand to form by matching (pairing)	
	h new DNA molecule contains half of the original molecule
Replication Facts	 DNA has to be copied before a cell divides DNA is copied during the S or synthesis phase of interphase
C all a la Dhara	New cells will need identical DNA strands
Synthesis Phase (S phase)	S phase during interphase of the cell cycle Occurs in the Nucleus of eukaryotes
	DNA replication takes place in the S phase.
DNA Replication	Begins at Origins of Replication
(in a nut shell)	Two strands open forming Replication Forks (Y-shaped region) New strands grow at the forks
	5' Parental DNA Molecule 3' Beplication Brock 5'
the process used by cells to copy DNA – enzyme unzips DNA	
and each side of the	
ladder acts as a template for the	
building of the new	
half. Use the N-base	
paring rules : A-T ; C-G	
Example)	
TACGGAC (old strand) ATGCCTG (new strand	
	As the 2 DNA strands open at the origin, Replication Bubbles form
	 Prokaryotes (bacteria) have a single bubble Eukaryotic chromosomes have MANY bubbles


	nesis of the New	opening replication fork
DNA	Strands	5' 3' Nucleotides DNA Polymerase Primer
		The Lagging Strand is synthesized discontinuously against overall direction of replication This strand is made in MANY short segments. It is replicated from the replication fork toward the origin
		5 3' DNA Polymerase RNA Primer 5'
		5' The second se
Laggiu Segm	ng Strand ents	Okazaki Fragments - series of short segments on the lagging strand Must be joined together by an enzyme
		Okazaki Fragment
		5' Polymerase 3' Lagging Strand
Joinir Fragn	ng of Okazaki nents	The enzyme Ligase joins the Okazaki fragments together to make one strand DNA ligase
		5' Okazaki Fragment 1 3' Lagging Strand
Replie	cation of Strands	Replication Fork Point of Origin
		Leading Strand
Mode	conservative el of Replication son & Crick)	The two strands of the parental molecule separate, and each acts as a template for a new complementary strand
		New DNA consists of 1 PARENTAL (original) and 1 NEW strand of DNA

		s Undergoing Mitosis
	Prophase Metaphase Anaphase Telophase	
		Prophase METAPHASE - Chromosomes, nuclear membrane breaks down, spindle fibers form. METAPHASE - chromosomes attach to
		Metaphase Chromosomes attach to spindle fibers and line up in the center of the cell. Anaphase Anaphase Chromatids separate, spindle fibers move them to opposite sides.
		Telophase
Prophase	e A	 DNA coils tightly & becomes visible as chromosomes Nuclear membrane disappears Nuceolus disappears Centrioles migrate to poles
Metapha		 Spindle fibers from centrioles attach to each chromosome Cell preparing to separate its chromosomes
Anaphase Aster Polar microtubule Kineto	Mitatic center Rentrosome)	 Cell chromosomes are separated Spindle fibers shorten so chromosomes pulled to ends of cell
Telophas	se	 Separation of chromosomes completed Cell Plate forms (plants) Cleavage furrow forms(animals) Nucleus & nucleolus reform




enzyme, hormone) oxygen (0), hydrogen (H), and possibly sulfur (S) atoms; made of amino acids; large and complex Structural molecule (like keratin in fingernails); enzyme, hormon transport molecule (like keratin transport molecule (like hemoglobin in blood); contractions ipids Contains carbon(C), oxygen (0), hydrogen (H), and possibly other atoms to oxygen (O) atoms is high; insoluble (does not dissolve) in water Source of energy; cell membran component; protective coating (like wal; chemical messenger (like cholesterol) ixample: Crisco Example: oils Source of energy (like glucose); and hydrogen (H) atoms; ratio of hydrogen (H) atoms; ratio of hydrogen to oxygen atoms is 2:1 Source of energy (like glucose); structural molecule (cellulose) ixample: Contains carbon (C), nitrogen (N), and hydrogen (H) at	(enzyme, hormone)oxygen (0), hydrogen (H), and possibly sulfur (S) atoms; made of amino acids; large and complexStructural molecule (like keratin in fingernails); enzyme, hormon transport molecule (like hemoglobin in blood); contractionsExample: NutsExample: MuscleLipids (fats, steroid, wax, oil, fatty acid)Contains carbon(C), oxygen (0), hydrogen (H), and possibly other atoms to oxygen (O) atoms is high; insoluble (does not dissolve) in waterSource of energy; cell membran component; protective coating (like kolesterol)Example: CriscoContains carbon(C), oxygen (O), hydrogen (H) atoms is onlygen (O) atoms is high; insoluble (does not dissolve) in waterSource of energy; cell membran component; protective coating (like kolesterol)Example: CriscoContains carbon(C), nitrogen (N), and hydrogen (H) atoms; ratio of structural molecule (cellulose)	Biomolecule	Structure	Function
ipids fats, steroid, wax, oil, fatty acid)Contains carbon(C), oxygen (O), hydrogen (H), and possibly other atoms to oxygen (O) atoms is high; insoluble (does not dissolve) in waterSource of energy; cell membran component; protective coating (like wax); chemical messenger (like cholesterol)Example: CriscoExample: oilsSource of energy; cell membran component; protective coating (like wax); chemical messenger (like cholesterol)Example: CriscoContains carbon (C), nitrogen (N), and hydrogen (H) atoms; ratio of hydrogen to oxygen atoms is 2:1Source of energy (like glucose); structural molecule (cellulose)	Lipids (fats, steroid, wax, oil, fatty acid)Contains carbon(C), oxygen (0), hydrogen (H), and possibly other atoms: ratio of hydrogen (H) atoms to oxygen (O) atoms is high; insoluble (does not dissolve) in waterSource of energy; cell membrane component; protective coating (like wax); chemical messenger (like cholesterol)Example: CriscoExample: oilsSource of energy; cell membrane component; protective coating (like wax); chemical messenger (like cholesterol) in waterSource of energy; cell membrane component; protective coating (like wax); chemical messenger (like cholesterol) in waterExample: CriscoExample: oilsSource of energy (like glucose); structural molecule (cellulose)Carbohydrates (Sugar, starch)Contains carbon (C), nitrogen (N), and hydrogen to oxygen atoms is 2:1Source of energy (like glucose); structural molecule (cellulose)Example: Sugar in CokeExample: Starch in pastaSource of energy (like are carbohydrates because they have sugar)	(enzyme, hormone)	oxygen (O), hydrogen (H), and possibly sulfur (S) atoms; made of	Structural molecule (like keratin in fingernails); enzyme, hormone transport molecule (like hemoglobin in blood);
Example: oils Carbohydrates Sugar, starch) Contains carbon (C), nitrogen (N), and hydrogen (H) atoms; ratio of hydrogen to oxygen atoms is 2:1 Image: Contains carbon (C), nitrogen (N), and hydrogen (H) atoms; ratio of hydrogen to oxygen atoms is 2:1 Image: Contains carbon (C), nitrogen (N), and hydrogen (H) atoms; ratio of hydrogen to oxygen atoms is 2:1	Example: oils Example: oils Contains carbon (C), nitrogen (N), and hydrogen (H) atoms; ratio of hydrogen to oxygen atoms is 2:1 Image: Sugar in Coke Example: Sugar in Coke	-	Contains carbon(C), oxygen (O), hydrogen (H), and possibly other atoms: ratio of hydrogen (H) atoms to oxygen (O) atoms is high; insoluble (does not dissolve)	component; protective coating (like wax); chemical messenger
hydrogen to oxygen atoms is 2:1	hydrogen to oxygen atoms is 2:1 hydrogen to oxygen atoms is 2:1 Example: Sugar in Coke Example: Sugar in Coke Example: Starch in pasta Example: Starch in pasta			Example: butter Source of energy (like glucose);
	Example: Sugar in Coke Example: Starch in pasta because they have sugar)	Sugar, starch)		*

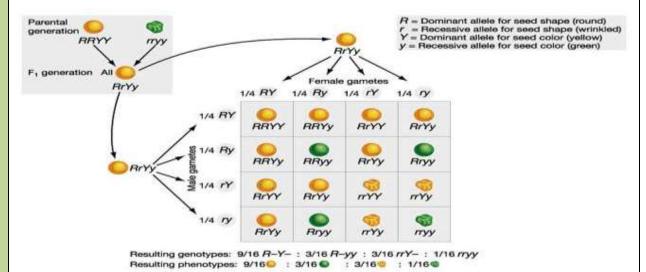
			Summary	
	Characteristic		Prokaryote (Bacteria and Blue green algae)	Eukaryote (Plant and animal cell)
	Cell membrane	2	Yes	Yes
	Cytoplasm	-	Yes	Yes
	Ribosomes		Smaller	Larger
	Nucleus		No	Yes
	Organelles		No	Yes
	Organelles		Specialized Cells	
			nation that controls what the cell can o ialized to attack pathogens (disease ca	
5B			Plant Cells	
Examine	Plant part		Examples of specialized pla	ant cells and functions
specialized cells, including	Leaf	11112-10	Cells containing c <u>hloropl</u>	<u>asts</u> (green coloring) for photosynt
roots, stems, and leaves of plants; and		Guard Cell	Guard cells control size o	of stomates (pores) allowing gas tra
animal cells such as blood, muscle, and epithelium (SS)	Stem	Xylem Cell		d minerals; ts like glucose throughout the plant this provides support for leaves,
	Root	Repeat Recipion	for the absorption of wate	rs increase surface area to allow r and mineral nutrients

	Animal Cells	
	Muscle Cell • Muscle cells are individual cells that comprise the muscle tissue of the body and execute muscle contraction. • There are three types of muscle cells: skeletal, cardiac, and smooth. Each of these types differ in cellular structure, specific function, and location within the bod • Together, the three muscle cell types play specific roles in supporting the skeletal structure and posture of the body, assisting in the flow of blood through blood vessels, aiding in digestion, and driving the heartbeat. Blood Cell • Mammals have 3 types of blood cells (they make up 45% of blood tissue): (Pictured here are the red blood cells) • I. red blood cells — Erythrocytes (carrying oxygen and so carbon dioxide through the use of hemoglobin) • . white blood cells — Erythrocytes (cells of the immune system involved in defending the body against both infectious disease and foreign materials • platelets — Thrombocytes- (clear, small and a natural source of growth in the body; it helps to form clots. • Epithelial tissue cover sexternal surfaces and internal cavities and organs. • Epithelia forms boundaries- it lines the intestines and the eophagus Most substances that move into or out of the body must pass through epithelial tissue. • One surface of the tissue is free and the other adheres to a basement membrane	
5C Describe the roles of DNA, ribonucleic acid (RNA), and environmental factors in cell differentiation	What is Cell Differentiation? A multicellular organism such as a human begins as a single cell. Through the cell cycle and mitosis, cell divides into 2 daughter cells which are continually divided by mitosis. Daughter cells are not necessarily identical or the same as their parent cells in the early stages. The process of cell differentiation produces specialized cells that have certain structures that allow them to perform a specific function. Cell differentiation occurs in stem cells, which are unspecialized cells that can differentiate into othe cells. Stem cells can produce other stem cells or specialized cells such as nerve, muscles, or blood ce Not all stem cells have the same differentiation potential. Types of Stem Cells (Specialized Cells)	
	 Totipotent cells- can produce any cell in an organism and can produce the cells of tissues surrounding an embryo. These cells are often found in the umbilical cord of mother's. Pluripotent cells form totipotent cells. In am embryo (blastocycst stage), these cells develop into three layers- germ layers: ectoderm, endoderm, and mesoderm. Each layer gives rise to a specific set of tissues and organs in the developing embryo. Multipotent cells, found in adults, can develop into a few cells such as stem cells in bone marrow which can develop into several types of blood cells, but not that of other tissues. 	

		5 Major Types of Cancer	
	Types	Characteristics	Examples
	Carcinomas	Involves cells that cover external or internal body parts	Cancers of the lung, breast, colon, skin cancers
	Sarcomas	Involves cells in bones, muscles, fat, or connective tissue	Bone cancers, Kaposi's sarcoma
	Lymphomas	Begins in the lymph tissues in the immune system	Hodgkins disease, non- Hodgkins disease
	Leukemias	Begin in the bone marrow and spread through the blood, do not involve tumors	Many types of acute and chronic leukemia
	Adenomas		Cancers of the thyroid, pancreas, and pituitary gland involves tumors of the endocrine cells
9D	What evidence supports the	ne formation of simple organic molecules	on early Earth?
nalyze and			
valuate the	-	are molecules that contain certain bonds	
vidence	v v	ade from organic molecules. Ex: nucleic a	cids, ATP, amino acids, and
garding	proteins.		
ormation of			
mple organic	 Scientists have hyp 	othesized about the conditions on early Ea	arth. Evidence suggest that Earth
· · ·	formed 4 to 5 billio	n years ago and for millions of years, volca	anic activity and meteor strikes ar
olecules and	comets kept the Ea	rth's crust unstable. About 3.9 billion yea	rs ago, the strikes slowed down
leir	and oceans formed. The atmosphere developed from gases emitted from volcanoes.		
ganization			
to long	Organic molecules	is hypothesized to have formed from an ex	xternal energy source such as
omplex	lightning, geothern	nal heat, or ultraviolet radiation. This idea	was tested in 1953 by Miller and
olecules		ty in a cloud chamber and supported from	-
aving		ite found in Australia in 1969 is said to be	
formation		cules. Once the simple organic molecules	-
		' Eventually more complex molecules form	
ich as the	-	is of molecules. Over time, anaerobic hete	•
NA molecule			erotrophs developed from these
or self-	molecular systems.		
plicating life	How might complex molec	ules and cells have formed?	
		molecule to life is said to have evolved by	/ the following flow chart:
	Formation of simple me	olecules Formation of co	mplex molecules (polymers-
	· .	simple organic n	nolecules)
	Self- replica	ting molecules Formation	of self- replicating molecule
		·	
	Metabolic		

How did DNA become the molecule that directs cell activity?
1968- Carl Woese hypothesized that DNA arose from RNA which is known as the " RNA World " Hypothesis
Inorganic matter split into simple organic molecules
RNA nucleotides form and
 RNA is able to replicate itself, synthesize proteins, and function in information retrieval
RNA then falls into 3 roles
1. Proteins build cell structures and catalyze chemical reactions
2. RNA helps in protein synthesis
 DNA functions in information storage and retrieval.

Reporting Category 2: Mechanisms of Genetics		
11 Questions on STAAR; 8 Questions on STAAR M		
3 Readiness Standa	ards; 5 Supporting Standards	
TEK	Key Ideas	
(RS)- will be		
tested (65%)		
(SS)- may be		
tested (35%)		
6A		
identify		
components		
of DNA, and		
describe how		
information	DNA	
for	DNA	
specifying	DNA (Deoxyribonucelic acid) carries genetic information from parent cell (via mitosis) or	
the traits of	egg and sperm cells (vis meiosis) to offspring; it is coiled inside the nucleus of eukaryotic cells; controls	
an	a	
organism is	cell's activities (determines which proteins a cell makes) and specifies the organism's traits; structure	
carried in	is	
the DNA;	2 strands twisted into a double helix with ladder- like connections between complementary nitrogen	
Readiness	bases.	
Standard		
	Components of DNA	
	 DNA is a polymer which is made of repeating units. 	
	The units are called nucleotides	
	• Nucleotides contain 3 parts: a phosphate group, a 5 carbon sugar called deoxyribose, and a	
	nitrogenous base.	
	The phosphate and the sugar make up the backbone of the DNA molecule.	
	Nitrogenous bases are Adenine, Guanine, Cytosine, and Thymine	
	• A always binds to T with 2 hydrogen bonds; C always binds to G with 3 hydrogen bonds	
	4 Nitrogenous bases in DNA	
	Adenine (A) = Thymine (T)	
	Cytosine (C) <u>=</u> Guanine (G)	
	• It has a twisted ladder shape called a double helix	
	DNA is packaged in structures called chromosomes . Within chromosomes, DNA is organized into units	
	called genes at are found at specific places on a chromosome. Genes hold the information for traits	
	such	
	as blood type, eye color, hair color, etc	
	How is information for specifying traits carried in DNA?	
	25	

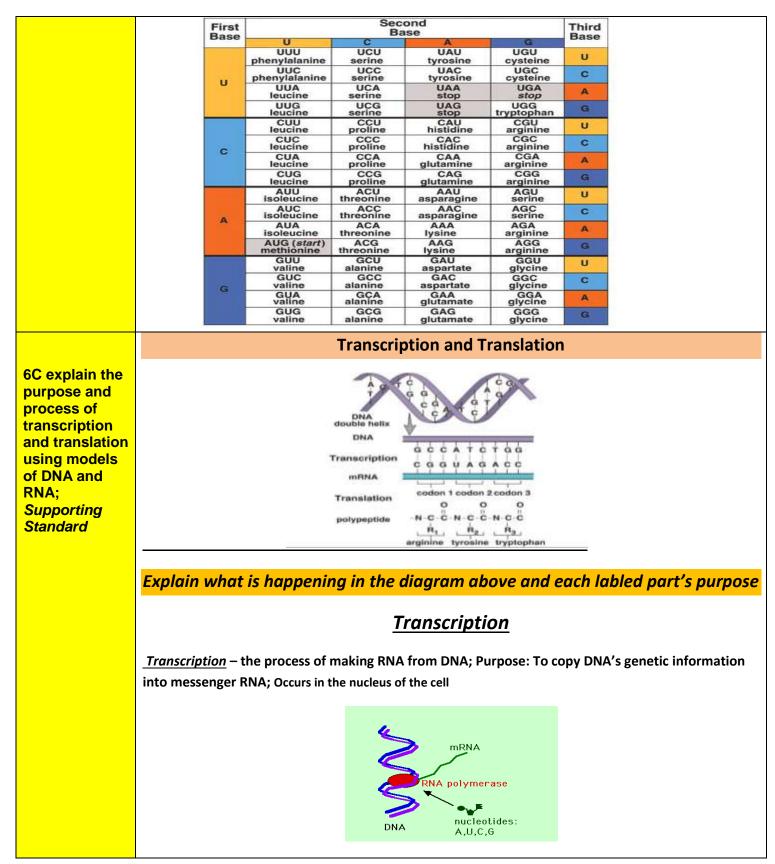

	• DNA carries genetic information in a sort of code based on the order of the 4 nitrogenous
	bases. The order of the bases within a gene determines the product of the gene. The differences in
	the
	base order of one organism are different from another organism.
	• For cells to use the information in DNA, it must be decoded.
	DNA is decoded in a 2 step process.
	1. Transcription - a strand of DNA is used as a template to make a strand of RNA, a single stranded nucleic acid (in the nucleus of the cell)
	2. Translation -the order of the nucleotides in RNA is decoded in a sequence of amino
	acids,
	the building blocks of proteins. The amino acids are assembled into proteins in the cytoplasm.
	Proteins have a role in shaping the traits of organisms. I.e. they may form structures in cells,
	act as catalyst in reactions (enzymes), transmits signals throughout the body (hormones) or help an organism fight invaders (antibodies)
6E identify and	Changes in DNA- mutations
illustrate	Mutation- A change to the structure or organization of DNA; most likely to occur
changes in	during DNA replication prior to mitosis; involves little or no effect on the organism, but can affect the
DNA and	cell and form cancer when mitosis does not stop. It can also be beneficial or helpful where it helps the
evaluate the significance of	organism to better survive within an environment.
these	
mese	
changes;	Only mutations that occur during meiosis can be passed on to offspring.
changes; <i>Readiness</i>	
changes;	A gene mutation involves a change in a single gene.
changes; <i>Readiness</i>	
changes; <i>Readiness</i>	A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome.
changes; <i>Readiness</i>	A gene mutation involves a change in a single gene.
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations?
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair.
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA 2. Insertion- a base pair is added to the gene. Ex: TACGCATGGAAA → TACAGCATGGAAA
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA 2. Insertion- a base pair is added to the gene. Ex: TACGCATGGAAA → TACAGCATGGAAA 3. Deletion- a base pair is removed from the gene Ex: TACGTTT → TAGTTT (C has disappeared)
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA 2. Insertion- a base pair is added to the gene. Ex: TACGCATGGAAA → TACAGCATGGAAA 3. Deletion- a base pair is removed from the gene Ex: TACGTTT → TAGTTT (C has disappeared) The result is a useless protein. Insertion and deletion mutations are known as frameshift mutations
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA 2. Insertion- a base pair is added to the gene. Ex: TACGCATGGAAA → TACAGCATGGAAA 3. Deletion- a base pair is removed from the gene Ex: TACGTTT → TAGTTT (C has disappeared)
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA 2. Insertion- a base pair is added to the gene. Ex: TACGCATGGAAA → TACAGCATGGAAA 3. Deletion- a base pair is removed from the gene Ex: TACGTTT → TAGTTT (C has disappeared) The result is a useless protein. Insertion and deletion mutations are known as frameshift mutations
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA 2. Insertion- a base pair is added to the gene. Ex: TACGCATGGAAA → TACAGCATGGAAA 3. Deletion- a base pair is removed from the gene Ex: TACGTTT → TAGTTT (C has disappeared) The result is a useless protein. Insertion and deletion mutations are known as frameshift mutations because they change the "reading frame" of codons.
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA 2. Insertion- a base pair is added to the gene. Ex: TACGCATGGAAA → TACAGCATGGAAA 3. Deletion- a base pair is removed from the gene Ex: TACGTTT → TAGTTT (C has disappeared) The result is a useless protein. Insertion and deletion mutations are known as frameshift mutations because they change the "reading frame" of codons. II. What are the effects of chromosomal mutations?
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA 2. Insertion- a base pair is added to the gene. Ex: TACGCATGGAAA → TACAGCATGGAAA 3. Deletion- a base pair is removed from the gene Ex: TACGTTT → TAGTTT (C has disappeared) The result is a useless protein. Insertion and deletion mutations are known as frameshift mutations because they change the "reading frame" of codons. II. What are the effects of chromosomal mutations? Chromosomal mutations may change the structure of the chromosomes. A deletion is the removal of part of a chromosome. Ex: ABC DEF → AC DEF
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA 2. Insertion- a base pair is added to the gene. Ex: TACGCATGGAAA → TACAGCATGGAAA 3. Deletion- a base pair is removed from the gene Ex: TACGTTT → TAGTTT (C has disappeared) The result is a useless protein. Insertion and deletion mutations are known as frameshift mutations because they change the "reading frame" of codons. II. What are the effects of chromosomal mutations? Chromosomal mutations may change the structure of the chromosomes. A deletion is the removal of part of a chromosome. Ex: ABC DEF → AC DEF A duplication is the addition of an extra copy of a section.
changes; <i>Readiness</i>	 A gene mutation involves a change in a single gene. A chromosomal mutation involves changes to the structure or organization of a chromosome. I. What are the effects of gene mutations? A gene mutation that changes one base pair if a gene is called a point mutation. There are 3 types: substitutions, insertions, and deletions. 1. Substitutions- one base pair is substituted or replaced with another base pair. Ex: CUU changes to CUA 2. Insertion- a base pair is added to the gene. Ex: TACGCATGGAAA → TACAGCATGGAAA 3. Deletion- a base pair is removed from the gene Ex: TACGTTT → TAGTTT (C has disappeared) The result is a useless protein. Insertion and deletion mutations are known as frameshift mutations because they change the "reading frame" of codons. II. What are the effects of chromosomal mutations? Chromosomal mutations may change the structure of the chromosomes. A deletion is the removal of part of a chromosome. Ex: ABC DEF → AC DEF

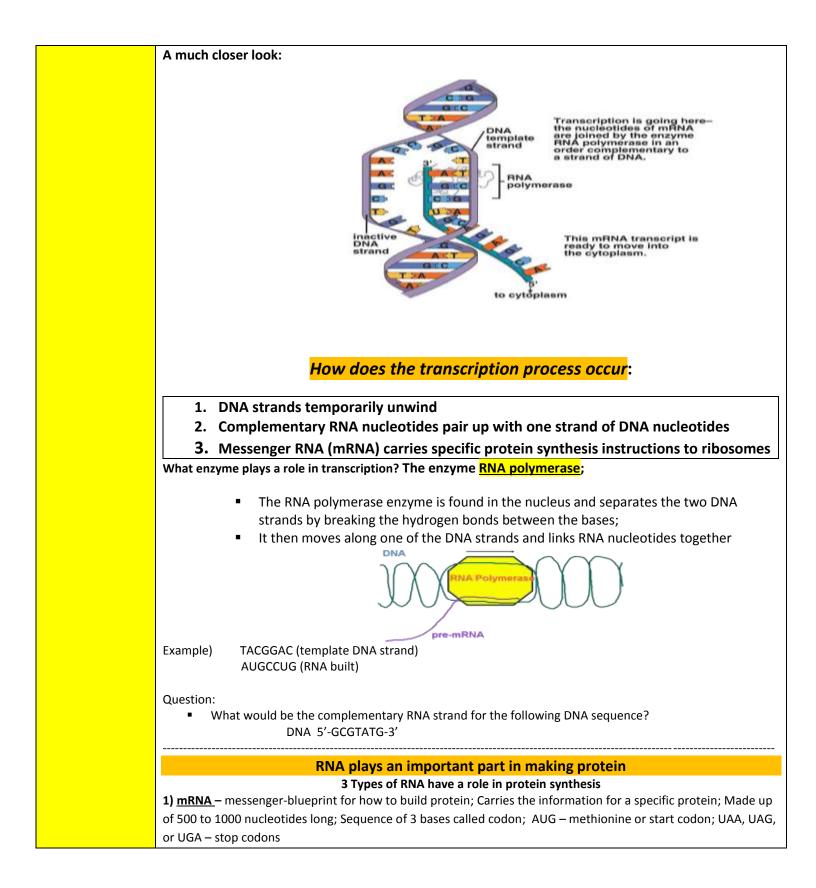
	Other chromosomal mutations change the position of genes along one or more chromosomes. In an inversion , a set of genes reverses its position on the chromosome. Ex: ABC DEF \rightarrow AED CBF In a translocation , sets of genes exchange positions on 2 nonhomologous chromosomes. Ex: ABC DEF \rightarrow ABC JKLDEF They may be lethal to offspring that inherit them.
6F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non-Mendelian inheritance; <i>Readiness</i> <i>Standard</i>	Outcomes of Genetic Combinations • Gregor Mendel worked with pea plants in the mid 1800s to learn the basic patterns of inheritance. He proposed the idea that units he called factors controlled traits. Today, these factors are known as genes. • Many organisms that reproduce sexually have 2 versions of every gene. One copy is included in each of the 2 gametes (sperm and egg cells). The two versions may not be the same or identical. Different forms of the gene are called alleles. • Mendel concluded that when an organism has 2 different alleles for the same trait, only the dominant allele is expressed (Principle of Dominance). The allele that is not expressed is called recessive. Ex: in the gene Tt The T= dominant; t= recessive Phenotype – what the organism looks like Genotype – what the organism looks like Genotype – what the organism looks like Genotype – the gene combination – either Homozygous (TT or tt) or Heterozygous (Tt) How are genes inherited in Monohybrid crosses? (Punnett Square) Image: the other parent Y Y Y YG Y Y YG VG YG YG Monohybrid Cross – a cross of 2 organisms that are heterozygous for one trait. 4 Results are possible because of the law of segregation-2 alleles separate or segregate during gamete formation. ½ will be dominant (Y) and ½ will be recessive (y)

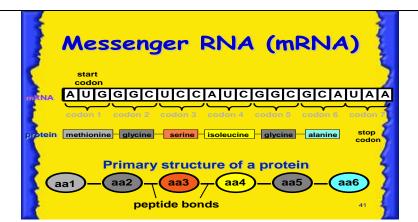
Genotypic Ratio: 1 YY, 2 Yy, 1 yy or 1:2:1

Phenotypic ratio: 3 plants will be yellow peas to one plant with green peas It is predicted that 75% of the pea plants will be yellow. 25% of the pea plants in this punnett square will be green.

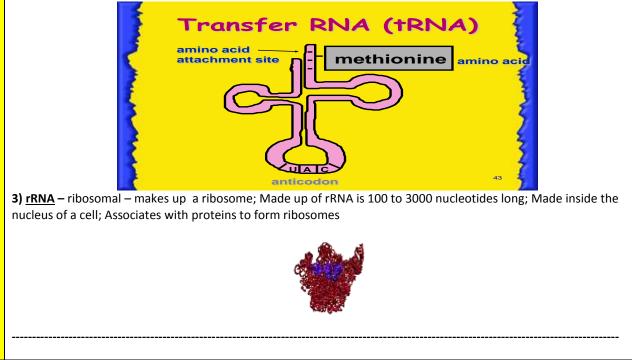
• Dihybrid cross – is the cross of 2 organisms that are hybrids for 2 traits. Notice there are 16 possible combinations of genotypes for the offspring. The phenotypic ratio is 9:3:3:1.


The 16 genotypes are equally likely because the way one pair of genes separate does not influence how the other pair separates. The law of independent assortment states that the alleles for 2 traits such as pea color and pea shape, segregate independently of one another. The law applies to many pairs of traits. However, some traits are linked, meaning their alleles do not segregate independently.


What are some Patterns of Inheritance?

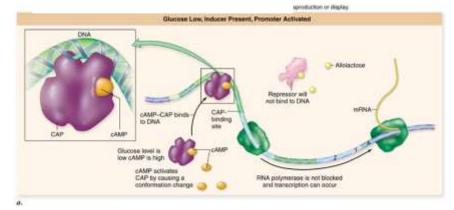

Many traits are expressed or inherited in ways that differ, at least partially from Mendel's view.

- Incomplete dominance- some alleles are only partially dominant over recessive alleles. In snapdragon flowers, the allele for red flowers[®] is partly dominant over the allele for white flowers (r). The heterozygous genotype (Rr) has pink flowers.
- **Codominance**-sometimes 2 alleles are expressed in heterozygous genotype. In chickens, the alleles for black feathers and white feathers are both expressed in the heterozygous genotype. These chickens have mixed black and white feathers.
- **Multiple alleles** many genes have more than one allele. Human blood, for example, is affected by 3 alleles for the same gene. The alleles for type A and type B are codominant. The allele for type O blood is recessive to the alleles for Type A and Type B blood.
- **Polygenic traits**-many traits are determined by multiple genes. Height and skin color in humans are examples of polygenic traits.

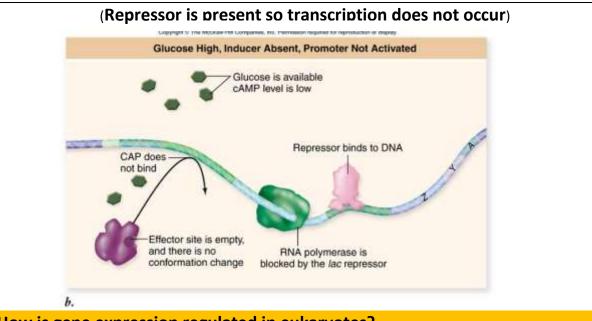

	• Maternal inheritance - chloroplasts and mitochondria both contain genes that are passed from generation to another only in egg cells. Your mitochondrial genes are the same genes found in your mother's mitochondria.
6B recognize that	Parts of the Genetic Code
components	How organisms inherit traits is one of the greatest achievements of modern biology.
that make up	
the genetic	Biologists know that the directions for inheritance are carried by a molecule called DNA or
code are	deoxyribonucleic acid. This genetic code, with a few minor variations, determines the inherited traits
common to all	if every organism on Earth.
organisms; <i>Supporting</i>	What are the components of the Genetic Code?
Standard	DNA has 3 components- deoxyribose, one or more phosphate groups, and one of 4 nitrogenous bases- A, T, C, G
	Proteins are made by the joining of amino acids into long chains called polypeptides. Each polypeptide contains a combination of any or all of the 20 different amino acids. The properties of proteins are determined by the order in which different amino acids join together as polypeptides.
	 A codon consists of 3 consecutive bases that specify a single amino acid which is added to the polypeptide. DNA contains a triplet code
	 Every three bases on DNA stands for ONE amino acid
	 The genetic code is the "language' of codons that is common to nearly all organisms. It is the "language" of mRNA instructions. Each three-letter unit on mRNA is called a codon. Most amino acids have more than one codon!
	 There are 20 amino acids with a possible 64 different triplets
	 The code is nearly universal among living organisms

2) <u>tRNA</u> – transfer RNA- carries amino acids to ribosome; Made up of 75 to 80 nucleotides long; Picks up the appropriate amino acid floating in the cytoplasm; Transports amino acids to the mRNA; Have anticodons that are complementary to mRNA codons; Recognizes the appropriate codons on the mRNA and bonds to them with H-bonds

	 Involves the following: mRNA (codons), tRNA (anticodons), ribosomes, and amino acids tRNA (transfer RNA) matches codons to amino acids which then join together to form a protein chain. Stop codon- codon that terminates the translation process; releases amino acids
6D	Gene Expression as a Regulated Process
Recognize that gene	
expression is	What is Gene Expression?
a regulated process;	• During transcription, an active gene is transcribed into mRNA. Then, during translation, mRNA
Supporting	is translated into a protein. All of these steps- from the start of transcription to the assembly of a protein are controlled and regulated by the process of gene expression.
Standard	 When cells divide during mitosis or binary fission, each daughter cell receives a complete copy of the organism's DNA.
	• In multicellular organisms, cells have the same genetic information regardless of their location or function. If all cells have the same DNA, why do muscle cells function differently from skin cells? This is because of gene expression.
	• Regulation of gene expression (or gene regulation) includes the processes that <u>cells</u> and <u>viruses</u> use to regulate the way that the information in <u>genes</u> is turned into <u>gene products</u>

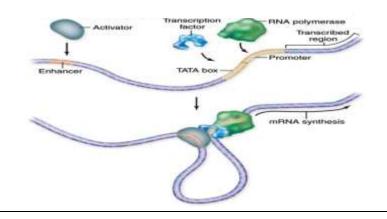

How is Gene expression controlled?

How is gene expression regulated in prokaryotes?

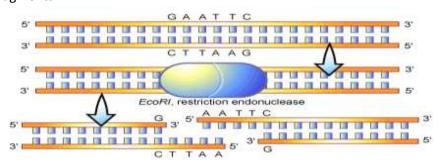

Prokaryotic DNA contains **operons**, groups of genes that are regulated together. Operons are located next to two regulatory regions of DNA- a promoter and an operator.

- **RNA polymerase** binds to the promoter, which is a signal that shows RNA polymerase where to **begin transcription**.
- The operator is next to the promoter and it controls the rate of transcription.
- A protein called a **repressor** can bind to the operator. <u>If the repressor binds to the operator, then RNA</u> polymerase cannot access the operon and transcription does not occur.

An example of an operon is the *lac* operon in the bacterium E. coli. This group of three genes must be turned on before the bacterium can use lactose as food.

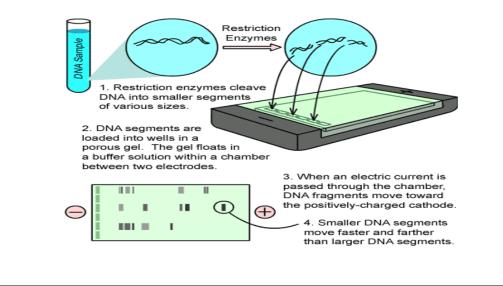

(Transcription can occur- operator present)

How is gene expression regulated in eukaryotes?


Controlling the expression of eukaryotic genes requires transcription factors.

- In eukaryotes, genes are rarely found in clusters that are activated by the same promoter.
- Many eukaryotic genes are preceded by a **short region of DNA** called the **TATA box** that **positions RNA polymerase.**
- Cells also regulate gene expression with DNA binding proteins called <u>transcription factors</u>.
- Each types of transcription factor affect gene expression in different ways. Some roles of transcription factors include opening tightly packed chromatin (which enhances transcription), attracting RNA polymerase, or blocking access to certain genes.
- In many cases, a group of specific factors must be present for RNA polymerase to attach to a binding site.
- After transcription is finalized, other mechanisms could stop gene expression. For example, mRNA may be prevented from leaving the nucleus, or its stability could be affected. Without mRNA, translation cannot occur.

6G recognize	Significance of Meoisis to Sexual Reproduction
the	Centromeres
significance of meiosis to	00.00
sexual	
reproduction;	Two homologous chromosomes undergo synapsis in melosis
and	CD CD Crossing over
Supporting	of homologous chromatics
Standard	Mercania I
	Meiosis II
	Four haploid cells produced: here two parental and two recombinant cells
	• Meiosis – cell division that creates 4 haploid cells called gametes – aka – reduction division
	Meiosis involves 2 divisions – Meiosis I and Meiosis II
	Meiosis I has some special events:
	 In Prophase I homologous chromosomes pair up and crossing over occurs. This
	recombination increases genetic variation for the species
	Metaphase I – Pairs line up
	 Anaphase I – pairs are separated
	Meiosis II is similar to mitosis
6H describe how techniques	DNA Technology to study the genomes of organisms
such as DNA	Genomes- is the set of genetic information that an organism carries in its DNA.
fingerprinting,	Genomes- is the set of genetic information that an organism carries in its DNA.
genetic	How can DNA fingerprinting be used to study a genome?
modifications, and	
chromosomal	DNA fingerprinting is a technique that compares specific sections of 2 or more DNA samples. The
analysis are	technique is used for a wide variety of purposes including forensics, studying the migration of animals
used to study the genomes of	and determining evolutionary relationships.
organisms.	
Supporting	Useful in determining if a particular person was at a crime scene. Every person's genome
Standard	contains sections of repeated DNA sequences between genes. What varies from person to
	person is the number of times these sequences are repeated. When the sections are
	compared, the results can show, with a high level of certainty whether DNA samples came
	from the same person.
	A. DNA Extraction- the opening of cells to separate/isolate DNA from other cell parts
	• Chemical treatments (some type of detergent with an enzyme) cause cells and nuclei to burst
	• The DNA is inherently sticky, and can be pulled out of the mixture
	This is called "spooling" DNA


- **B. DNA Cutting-** large DNA molecules are cut into smaller fragments using restriction enzymes. These enzymes recognize and cut DNA at specific sequences.
- **Restriction enzymes** cut DNA at specific sequences; Useful to divide DNA into manageable fragments

C. Separating DNA – DNA fragments can be separated and analyzed using gel electrophoresis. This process allows scientists to compare genomes of different organisms, separate genes, and create DNA "fingerprints"

A. Electrophoresis- how the DNA is analyzed

- DNA can be separated based on size and charge
- The phosphate groups are negatively charged
- DNA is placed in a gel and electricity is run through
- Negative DNA moves toward the positive end
- Smaller fragments move farther and faster

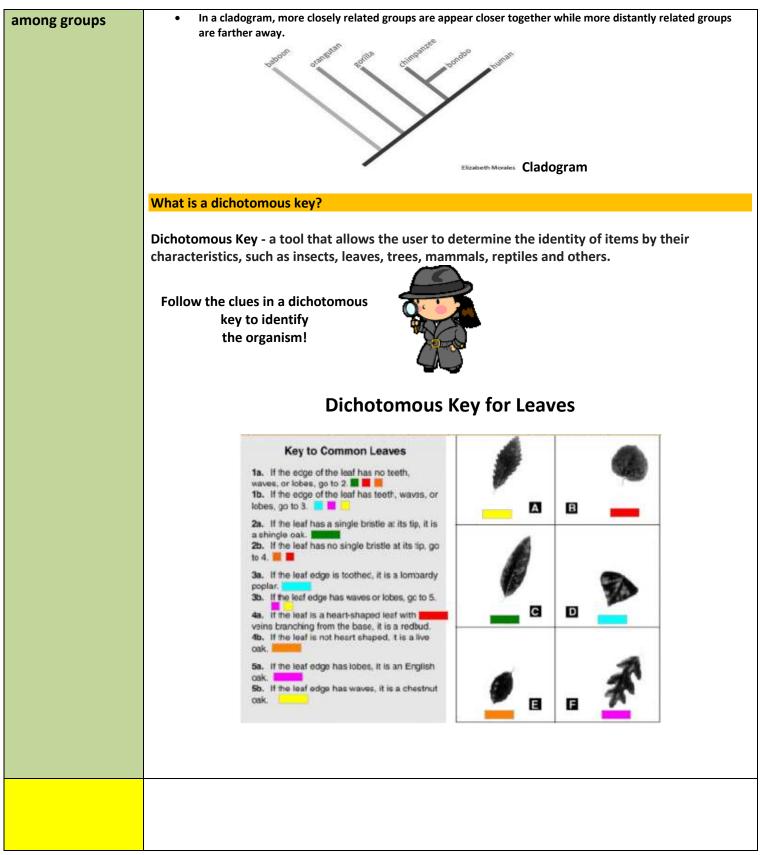
4) Sequencing DNA – this process allows red electrode scientists to determine the sequence of N-bases comb **DNA fragment** in DNA. migration black electrode 5) Recombinant DNA – scientists can cut DNA agarose gel from two sources with the same restriction **DNA** loaded enzyme and combine them. This is used in genetic wells + engineering. This process has been used to create human proteins used to treat disease, create pest-

resistant crops, and for many other purposes.

6) Copying DNA – polymerase chain reaction (PCR) has been developed that makes many copies of a small amount of DNA.

How Can a Chromosomal Analysis be used to Study a Genome?

<u>Chromosomal analysis</u> is the detailed study of all of the chromosomes of a cell. It can identify some genetic abnormalities and predict the likelihood of diseases.


Karyotyping- a visual display of all of the chromosomes in an organism's genome, arranged by decreasing size. To produce a karyotype, a researcher photographs chromosomes in a cell during mitosis and then arranges the photographs by size. Karyotypes can reveal genetic abnormalities in an individual, such as an extra chromosome or a chromosome that is missing.

Ex: A Human Karyotype

Karyotypes are pictures taken of the chromosomes at metaphase. They are cut out and matched with their identical chromosome. Two copies of each chromosome should be present. This karyotype shows a mutation. One of the sex chromosomes is missing. Also #21 has 3 chromosomes. This person most likely has <u>Trisonomy 21 or Down's Syndrome</u>.

Reportir	ng Category 3: Biological Evolution and Classification
	AR; 8 questions on STAAR M
*3 readiness standard	ls; 7 supporting standards
TEK	Key Ideas
(RS)- will be tested	
(65%)	
(SS)- may be tested	
(35%)	
7A	Evidence of Common Ancestry Among Groups
	(Theory that all organisms are descended from the same ancestor)
analyze and	I. Fossil record
evaluate how	A variety of organisms that have existed at different times, including very simple, ancient species
evidence of	and the eventual arrival of more varied and complex species
common ancestry	II. Biogeography
among groups is	Geographic distribution of organisms (species that live in the same area are more closely related,
provided by the	but related species can also be found living far apart)
fossil record,	III. Homologies
biogeography, and	A. Anatomical Homologies
homologies,	Structural similarities (like bones in a bird's wing and the human arm) that serve a different purpose for each species.
including	B. Molecular Homologies
anatomical,	Molecular similarities among organisms (the genomes for humans and chimpanzees are about 99%
molecular, and developmental	identical)
developmentai	C. Developmental Homologies
	Embryonic similarities among certain organisms show how some organisms develop in common ways
	(vertebrate embryos have gill pouches that later develop into gills or Eustachian tubes)
B.7.E analyze	Evolution is the process through which species change over time.
and evaluate the	Notural Coloction is a theory proposed by Charles Derwin that evaluation
relationship of	 Natural Selection is a theory proposed by Charles Darwin that explains how evolution
natural selection	occurs. It proposes that those individuals in a population that are better adapted to their environment are more likely to survive and reproduce.
	environment are more likely to survive and reproduce.
to adaptation and	 Inherited variations are differences in traits of individuals of the same species.
to the	
development of	• Adaptation is a trait that increases an organism's chances of survival in its environment,
diversity in and	such as white fur increasing an organism's chances of survival in a snow- covered
among species	environment.
B.8.B categorize	How do scientists categorize organisms?
organisms using a	Scientists may use several ways to categorize organisms. It depends if they are looking at a group of
	organisms or an individual organism. They may use the following:
hierarchical	
classification	Cladogram- a diagram that shows relationships among groups of organisms
system based on	Dichotomous key- determine the identity of a single organism
similarities and	What is a cladogram?
differences shared	• A cladogram is used to show the evolutionary relationships among species. They show how members of a
	group change over time, giving rise to new groups.

7B	
analyze and evaluate scientific explanations concerning any data of sudden appearance, stasis, and sequential nature of groups in the fossil record	 Scientists established a fossil record that reveals that evolution can proceed slowly with gradual changes in spurts with sudden changes. Organisms represent living fossils because they look very much like their ancestors that lived long ago. The fossil record is a timeline that shows how life has evolved in Earth. It is organized according to the age of the fossil and their similarities. Gradualism is the process of evolution in which a species changes very slowly over a very long period Punctuated equilibrium is the process of evolution where a species experiences little or no change for long periods, followed by sudden change
70	A living fossil is a species that shows little or no change since its ancestor first appeared on Earth
7C	What is Natural Selection?
analyze and evaluate how natural selection	A population is a group of individuals of the same species who interbreed. Individuals in a population have varying traits. For ex: some dogs may have a sharper sense of smell than other dogs and can hunt better than other dogs (ex: blood hounds vs. poodles)
produces change in populations, not individuals	A variation that makes an organism more successful in its environment is called adaptation. Meiosis creates variation among individuals which causes consequences at the population level
	Individuals with adaptations that help them survive and reproduce in their environment have high fitness. Fitness refers to an organism's ability to survive and reproduce in its environment.
	Although individual variation is the root of natural selection, populations evolve by natural selection.
	Natural selection is a process in which organisms with adaptations best suited to their environment leave more offspring than other organisms. Because these organisms produce more offspring, their genetic variations become more prevalent in a population and the population changes or evolves.
	How does natural selection produce changes in populations and not individuals?
	Natural selection can occur in a variety of ways. Natural selection on trait controlled by a single gene with two alleles can cause one allele to increase and the other to decrease. Polygenic traits are more complicated. Natural selection on polygenic traits that can occur as <u>directional</u> <u>selection, stabilizing selection, or disruptive selection.</u> Each of these ways causes a distinct change to a population.

STABILIZING (NORMALIZING)	FORE I AFTER
number of individuals	rieties
	dividuals of individuals
DIRECTIONAL SELECTION	
number of individuals	FORE number of individuals varieties. Jividuals of individuals
DISRUPTIVE SELECTION	
number of individuals	FORE number of individuals varieties dividuals of individuals
Natur	l Selection on Polygenic traits
Directional selection Occurs whe	n individuals with a particular phenotype (physical feature ve an advantage in their environment.
Often a sin	gle gene controls the trait.
	with larger beak sizes are more successful at surviving ihan mall or medium sized beaks.
	n extremes in phenotypes gives individuals in the a disadvantage. Often these traits are polygenic- controlled genes.
	ze of an organism. For most organisms, extremely large or small body types are not favorable for survival.
Disruptive selection Occurs whe	n extreme phenotypes for a trait are adaptive.
	beaks of an intermediate size are a disadvantage for survival,
birds with s	mall or large beaks are more likely to survive.
If the surger	
If the press	ure in natural selection lasts long enough, birds will have

B.7.D analyze and evaluate how the elements of natural selection, including inherited variation, the potential of a population to produce more offspring than can survive, and a finite supply of environmental resources, result in differential reproductive success

What causes inherited variation among individuals in a population?

- Inherited variation refers to the genetic differences among individuals in a population, such as a body size or fur color. Can be caused by mutations in DNA that affect the way genes are expressed. Other causes include crossing- over and the independent assortment of chromosomes that occur during meiosis. Variations can be introduced when individuals migrate from one population to another and mate.
 - 2 components of inherited variation are genotype and phenotype.
- Knowing the frequency of alleles and phenotypes in a population is important for understanding how natural selection could affect the evolution of a population.

What contributions to differential reproductive success?

Natural selection is caused by an environmental stressor for which specific phenotypes have a fitness advantage. Over time, the individuals with those adaptive phenotypes survive and reproduce, which makes the allele responsible for the phenotype more common in the population.

Environmental resources

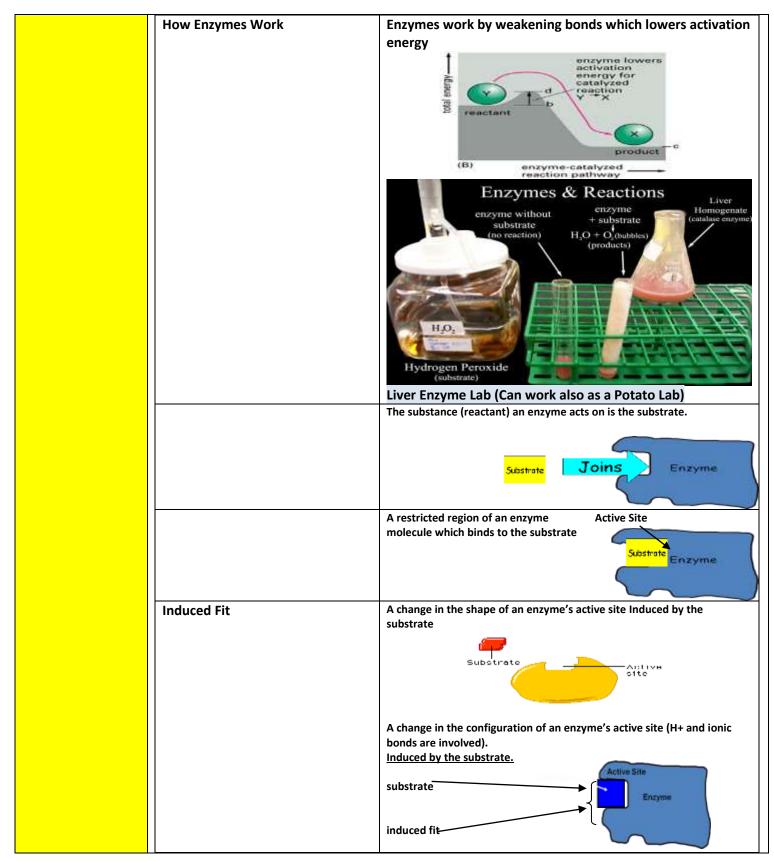
The environment may pose many challenges. Resources are scarce and predators and competitors are numerous. Many organisms will die before they reproduce.

However, certain phenotypes can give some individuals a fitness advantage. Fitness refers to an organism's ability to survive, attract a mate, and reproduce within a particular environment.

The difference in the number of offspring produced by 2 phenotypes is called differential reproductive success. Natural selection is the process by which traits become more or less common in a population due to differential reproductive success. There are several elements of natural selection.

In	herited	Inherited traits that are favored – ie. Black mice that survive in an environment
va	ariation	because they can camouflage better than brown mice- continues while the
		least favored trait declines. Mice with the black fur will have a better chance of
		surviving and passing on their alleles. If the environment changes, the relative
		fitness of individuals can change.
Pr	roducing more	Most populations produce far more offspring than can survive in any given
of	ffspring than can	environment due to resource constraints.
su	urvive	When populations produce many more offspring than can survive, the likelihood increases that some offspring will reach reproductive age. The ones that do reproduce likely have phenotypes gave them an advantage within that environment over those that did not survive or reproduce.

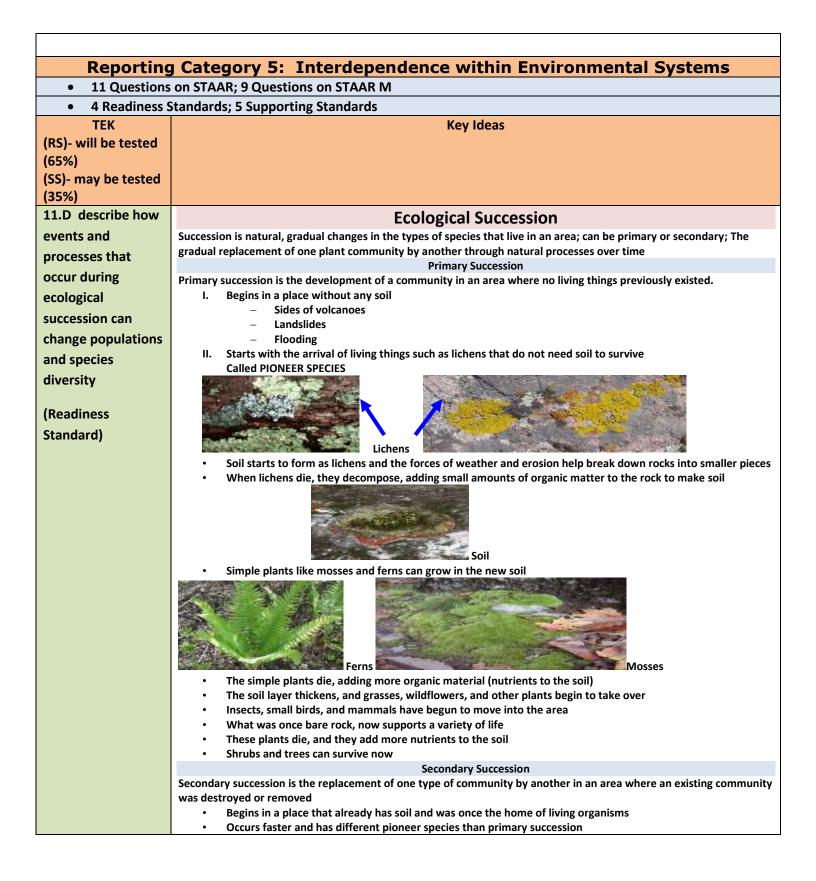
	Limited supply of environmental resources	In any environment, organisms compete for limited resources- space, food, and shelter. When resources become scarce, such as a drought, then <u>competition increases</u> . Populations often decline, and the individuals with advantageous traits for survival are most likely to live and reproduce.
7.F analyze and		Other Evolutionary Mechanisms
evaluate the effects of other	Genetic drift	Change in the gene pool caused by chance; tends to decrease a species' genetic variation Example: Flood kills 95% of a worm population
evolutionary mechanisms,	Gene flow	Change in gene pool caused by movement of organisms into (increase genetic variation) or out of (decrease genetic variation) the population
including genetic drift, gene flow,	Mutation	Change in the genetic pool caused by insertion, deletion, or substitution in DNA sequence of gamete cell; tends to increase genetic variation
mutation, and recombination	Recombination	Sexually reproducing species have increased genetic variation because of gene crossover events during meiosis
scientific explanations concerning the complexity of the cell	 No one knows in have been on reprokaryotes. The first cells line who live in extrement of the oldest known for the oldest known fo	sils of eukaryotes are 2.1 billion years old and resemble green algae. ed to explain this phenomenon. some organelles in eukaryotic cells formed from symbiotic relationships
		yotes and eukaryotes. rocess in which one organism lives inside another organism to the benefit of

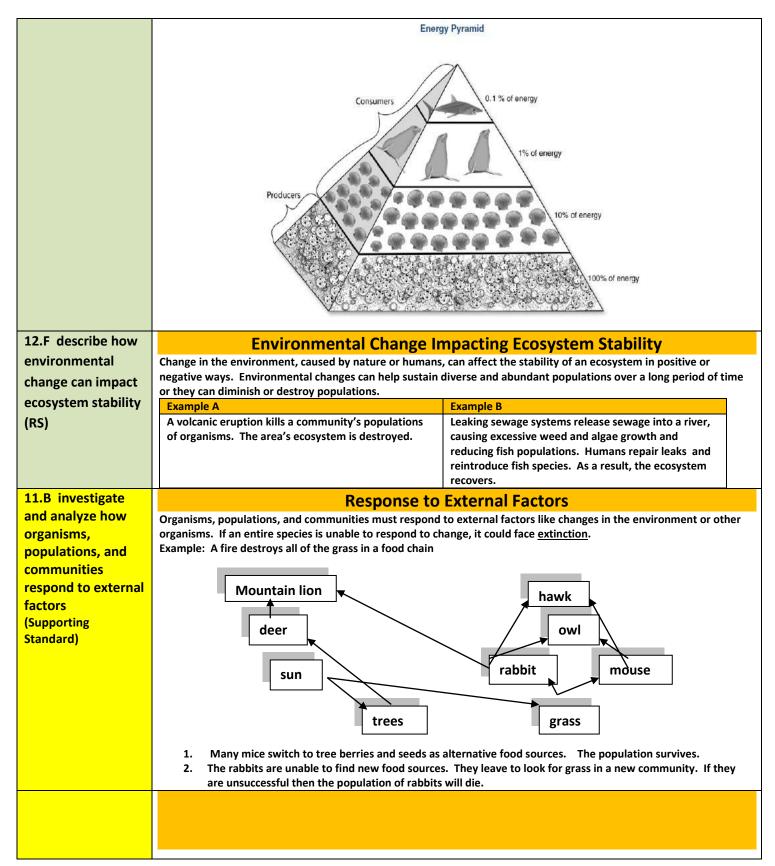

	both. According to the endosymbiotic theory, free-living aerobic bacteria became endosymbionts inside larger, anaerobic cells. Over time, they evolved into the organelles that are now observed as mitochondria. In another endosymbiotic process, free-living photosynthetic bacteria become chloroplasts. Lynn Margolis proposed this theory.
B.8.A define taxonomy and recognize the importance of a standardized taxonomic system to the scientific community	TaxonomyTaxonomy is the study of the classification of organisms, enables the international scientific community to use a common system to identify, organize, and classify new and existing organisms or groups of organisms. Carolus Linneaus developed this system.Binomial nomenclature- "two word naming system"; The first word is the organism's genus or the group at which it and other species belong. The second word is a species' name. A species is a group of organisms that can breed or reproduce with one another and produce fertile offspring. Ex: Humans are called <i>Homo sapiens; Binomial nomenclature:</i> system of naming an organism using its genus and species; write in italics and capitalize only the genus
	LEVELS OF CLASSIFICATION: Kingdom Phylum Class Order Family Genus Species (Largest) (Smallest) To help you remember: Think of the following: (King Philip came Over For Grape Soda) CLASSIFICATION OF HUMANS: • Kingdom Animalia (multicellular organisms that eat food) • Phylum Chordata (dorsal hollow nerve cord, notochord, pharyngeal slits) • Class Mammalia (hair, mammary glands, endothermy, four-chambered heart) • Order Primates (nails, clavicle, orbits encircled with bone, enlarged cerebrum, opposable digits) • Family Homidae (bipedal – walk erect on two feet, advanced tool use) • Genus Homo ("human" like) • Species Homo sapiens
	Why is a standardized taxonomic system important to the scientific community? It allows scientists to communicate precisely about a species they are studying. The use of common names causes far too much confusion. 2 names are much more precise by using only the genus and species. We immediately know the group and their characteristics. Ex: camel - there are many species of camels. A scientific name such as <i>Camelus bactrianus</i> is recognized all around the world as only one type of camel.
	Before Linneau's taxonomic naming system, scientists would use scientific names in as many as seven words and a species had more than one scientific name. Ex: a wild rose would be labeled as <i>Rosa sylvestris inodora seu canina</i>

			6 King	doms of Clas	ssification	
8.C compare paracteristics of	common syst Autotroph: d	tem to identify, organism that make	ssification of or anize, and class s its own food	rganisms, enables th ify new and existing Ex: plants	ne international scienti g organisms or groups (ific community to use a of organisms
xonomic groups,	Heterotroph	organisms that de	-	-		
cluding archaea,			used to classif	y or group all organ	isms	
acteria, protists,	Domain	Description				
ngi, plants, and	Archae	extreme condition	•	s; some autotrophs	and some heterotroph	ns ; some live in harsh or
nimals				aebacteria		
		Kingdom		aryote		
		Cell type Cell structures		•	loglycan	
		# of cells		Cell walls without peptidoglycan Unicellular		
		Nutrition				
		Reproduction		Autotroph or heterotrophy Asexual by binary fission		
		Metabolism				
		Examples		Asexual Methanogens (gas loving bacteria) balonhiles (salt loving bacteria.		
		Liampico		Methanogens (gas loving bacteria), halophiles (salt loving bacteria- Ex: Dead Sea)		
	Bacteria	Unicellular proka		· · · · · · · · · · · · · · · · · · ·	t are heterotrophs; ty	pically bacteria
		Kingdom	-	cteria		,
		Cell type	Proka	Prokaryote		
		Cell structures	Cell v	Cell walls with peptidoglycan		
		# of cells		Unicellular		
		Nutrition	Auto	roph or heterotrop	hy	
		Reproduction	Anim	al		
		Metabolism	Aero	oic or anaerobic		
		Examples	Strep	tococcus, Escherich	ia coli (E. coli)	
	Eukarya	Eukaryotes; wide	e variety			
		Kingdom	Protista	Fungi	Plantae	Animalia
		Cell type	EUKARYOTE	EUKARYOTE	EUKARYOTE	EUKARYOTE
		Cell	Some: cell	Cell walls of	Cell walls of	No cell walls or
		structures	walls of	chitin	cellulose;	chloroplasts
			cellulose;		chloroplasts	
			Some: cilia			
		# of cells	Most	Most	Most	multicellular
			unicellular;	multicellular;	multicellular;	
			some	some	some green algae	
			colonial;	unicellular	unicellular	
			some multicellular			
		Nutrition	Autotroph or	heterotroph	Autotroph	Heterotroph
		Nutrition	heterotroph	neterotroph	Autotroph	neterotroph
		Reproduction	Asexual or	Asexual or	Asexual or sexual	Usually sexual
		nep: oddenom	sexual	sexual	. Ioexaal of bexaal	county service
		Metabolism	Most are	Anaerobic or	Aerobic	Aerobic
			aerobic	aerobic		
		Examples	Amoeba,	Mushrooms,	Mosses, ferns,	Sponges, worms,
			paramecium,		flowering plants	insects, fishes,

	slime, molds,	albicane (vezet	mammals	
	giant kelp	<i>albicans</i> (yeast infection); <i>Tinea</i>	maininais	
	8F	pedis (athlete's		
		foot)		

11 Question	s on STAAR; 9 STAAR M			
	Standards; 4 Supporting St	andards		
TEK (RS)- will be tested (65%) (SS)- may be tested (35%)			Key Ideas	
10.A describe the	An animal's organ system	ns interact to per	form many functions.	
interactions that	Regulation	-	tem makes certain hormones. Blood in the circulatory system carries	
occur among		them to the skelet	al system to control the amount of calcium released from bones.	
systems that perform the	Nutrient Absorption	Food is broken down in the stomach mechanically by the muscular system (churns food) and chemically by water, acid, and enzymes in the digestive system; nutrients are then absorbed by blood in the circulatory system Certain hormones produced in the endocrine system control ovulation in a female's reproductive system		
functions of regulation, nutrient	Reproduction			
absorption, reproduction, and	Defense	Mucus in the lungs traps a virus in the respiratory system. T-cells in the immune system destroy virus- infected cells. Nerves in the nervous system sense pain from a fire on the skin		
defense from injury or illness in animals				
10.B describe the	A plant's of	A plant's organ system and parts interact to perform many functions.		
interactions that	Function		Example of interactions	
occur among	Transport		system uptakes water.	
systems that		-	essels transport water to the leaves in the shoot system.	
perform the	Penroduction		vessels transport sugars and nutrients throughout the plant. oductive organs in a flower are the pistil (female) and the stamen	
functions of	Reproduction	(male).	buttive organs in a nower are the pistil (remaie) and the stamen	
transport,		• •	a mature, pollinated ovule (fertilized egg).	
reproduction, and			es in a plant's root system help trigger the growth of a seed in the	
response in plants	_	shoot sys		
	Response		a plant does not receive enough light, a hormone that causes growth shoot system's leaves. It is transported to the darker side. As the	
			ne plant bends toward the light.	
9.B compare the	Photosynth		Cellular respiration	
reactants and	Process by which green plant		Energy releasing process that occurs in the mitochondria of	
products of	organisms make sugars (like		eukaryotic cells and requires oxygen; energy is produced in the	
photosynthesis	release oxygen using light en dioxide and water	ergy, carbon	form of the molecule adenosine triphosphate (ATP) which is then	
and cellular			used for the organism's metabolic processes (like growth or	
respiration in		60	maintenance)	
terms of energy	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 +$ Carbon dioxide + water make		$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO2 + 6H_2O + energy$ (glucose) (ATP)	
and matter	energy added from the sun) g oxygen		Glucose (sugar) + oxygen gas makes water and carbon dioxide and energy	
	Reactants: 6CO ₂ + 6H ₂ O (windown from the sun)	ith light energy	Reactants: C ₆ H ₁₂ O ₆ + 6O ₂	

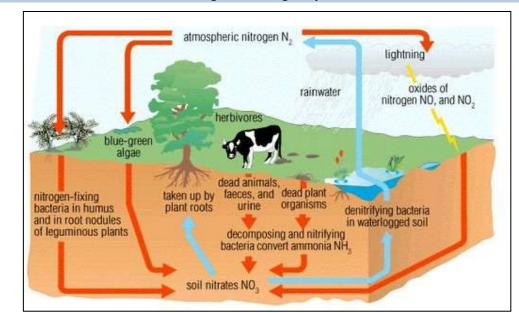

	unlightOxyge	Total ATP (Energy) Yield - Eukaryotes 02 ATP - glycolysis (substrate-level phosphorylation) 04 ATP - converted from 2 NADH - glycolysis
	arbon ioxide Vater Glucos	06 ATP - converted from 2 NADH - grooming phase 02 ATP - Krebs cycle (substrate-level phosphorylation) 18 ATP - converted from 6 NADH - Krebs cycle <u>04 ATP</u> - converted from 2 FADH ₂ - Krebs cycle 36 ATP - TOTAL
9.C identify and investigate the role of enzymes	Enzymes	Enzymes Enzymes control the rate of chemical reactions by weakening bonds, thus lowering the amount of activation energy needed for the reaction Also known as proteins Are catalysts (speed up reactions chemical reactions) They do not change during reaction Often named by the affected substrate, ending in "-ase" Example: Lactase (enzyme) speeds up the following reaction of lactose Lactase (catalyst) Lactose → glucose + galactose Most enzymes are Proteins (tertiary and quaternary structures) Act as Catalyst to accelerates a reaction Not permanently changed in the process Are specific for what they will catalyze Are Reusable End in -ase Examples: -Sucrase -Lactase -Maltase


Ider	Assessment Point by the diagram on the right, htify the role of enzymes and list ways investigated enzymes in lab.	Active Site Altered
10.C analyze the	gical systems are organized into levels	LEVELS of ORGANIZATION which directly relate to other levels and to the whole system. Example:

TISSUE	Similar cells working together	Aller a line of the
ORGAN	heart, brain, stomach	Smooth muscle tissue Loose connective tissue Nervous tissue
ORGAN SYSTEMS	respiratory, circulatory, excretory, digestive, urinary, reproductive, integumentary, etc	Lymphatic Respiratory System System System System System Reproductive System System System System System
ORGANISM		AR Y
POPULATION	one species in an area	
COMMUNITY	several populations in an area	Molecula (ATP) Molecula (ATP) Molecula (Bargiton) Cell (Reuron) Tissue (Bargiton) Drgan (Brain) Crash
ECOSYSTEM	forest, prairie	
BIOME	Tundra, Tropical Rain forest	
BIOSPHERE	all living and nonliving things on Earth	

11.A describe the	Homeostasis is the process by which cells and organisms maintain a constant balance in their internal environment.		
role of internal feedback mechanisms in the maintenance of	An internal feedback mechanism is a self-regulating process, like a chemical reaction, that can help maintain homeostasis. It is a system that operates to keep the internal conditions of an organism within a certain range despite changes that occur in its external environment.		
homeostasis	Mechanism	Response to Stimulus	Example
	Negative feedback	Decreases effect	A human that becomes too hot will cool himself by dilating vessels and sweating
	Positive feedback	Increases effect	Ethylene is produced when apples ripen, which stimulates production of more ethylene, causing more apples to ripen

	 Example: after forest fires Climax Community A stable group of plants and animals that is the end result of the succession process Does not always mean big trees Grasses in prairies -Cacti in deserts 	
B.12.A interpret relationships, including predation, parasitism, commensalism, mutualism, and competition among organisms (RS)	Relationships • Symbiosis is a relationship in which two different organisms have a close association with each other. • Mutualism is a symbiotic relationship in which both organisms benefit. • Commensalism is a symbiotic relationship in which one organism benefits while the other organism is not affected in any way. • Parasitism is symbolic relationship in which one organism benefits while the other is harmed • Predation involves an organism known as a predator that eats part or all of another organism known as its prey. • Competition occurs when two or more individuals or populations compete for the same resource, such as shelter or food • A pathogen is a virus, bacterium, or any organism that causes a disease.	
P 12 C analyza tha	Elow of Matter and Energy through Trankis Loyals	
B.12.C analyze the flow of matter and energy through trophic levels using	Flow of Matter and Energy through Trophic Levels Trophic level – the level at which energy is flowing through an ecosystem Terrestrial Food Web	
various models, including food chains, food webs, and ecological	grass grasshopper grasshopper	
pyramids (RS)	bacteria tox	


11.C summarize	Role of Microorganisms			
the role of				
microorganisms in	Microorganisms:			
both maintaining	Tiny organisms (like bacteria or protists) that can only be seen in a microscope. They play a critical role in the maintenance and disruption of the health of both individual organisms and entire ecosystems.			
and disrupting the	Example: The bacteria E. coli is critical for the digestive process in many warm- blooded organisms. Outside of the			
	intestines, E.coli can sicken or kill certain organisms			
health of both	Beneficial Roles of Bacteria	Harmful Roles of Bacteria		
organisms and	Decompose organic material	Spoil food		
ecosystems	Change nitrogen from one form to another in the nitrogen cycle	Produce harmful or damaging toxins		
	Have role in making drugs(like penicillin), foods(like	Cause of shortage of oxygen in lakes where blooms		
	yogurt and cheese), and vitamins	occur		
	Help absorb nutrients in the human digestive system	Cause diseases		
12.B compare	What is genetic variation?			
variations and				
adaptations of	Within a population, individuals differ from one another. Many of these differences are			
organisms in	genetically based. Environmental factors can	also lead to individual differences because they		
different ecosystems	influence how genes are expressed.			
	Genetic variation is the difference in the genot	ypes within a population. Ex: Humans have		
	different eye and hair color, skin color, shape o	f faces, certain health disorders, etc.		
	Genetic variation helps species survive becaus	e if all organisms within a population were		
	genetically identical, then all of them would b			
	environment or disease. The entire populatio			
	competitor, or the arrival of a new disease which would put the species in danger.			
	What are adaptations?			
	An adaptation is a heritable trait that helps an organism survive in its environment. It may be a			
	physical trait such as a beak size or shape or a behavioral trait such as how to protect itself or find			
	food.	· ·		
	Some adaptations are specific to certain ecosy	stems. Ex: some insects camouflage themselves to		
	fit in the environment. Ex: chameleon			
	How do variations and adaptations of organisms compare in different ecosystems?			
	<i>Genetic variations</i> tend to increase with the size of a population and the rate at which the			
	species reproduces.			
	species reproduces.			
	Contain notherns in the constitution	n and adaptations in nonvistions suist		
	 Certain patterns in the genetic variation and adaptations in populations exist. 			
		f species on Earth are also most genetically varied.		
		ants, that have small populations that have much		
	less genetic variations.			

	 Some organisms in different ecosystems have similar adaptations. Ex: animals that graze grasslands such as zebras, buffalos, and llamas. They all have flat teeth for grinding grass, a long and complex digestive system to break down grass, and sturdy hooves for walking and running. 	
	• Deciduous forest- This biome has a wide range of temperatures and precipitation. The organisms that adapted to survive the seasonal weather changes.	
	To survive the winters, these animals often do not move much and some may hibernate or sleep. Other animals migrate to other places until warm weather returns to the forest.	
	• Desert- In this biome, plants and animals have adaptations that help them conserve water. Ex: Leaves of a cacti	
	Also many animals are nocturnal animals and move only during the night because it is so hot in the desert. They also may have physical adaptations to keep cool. Ex: the long ears of rabbits and foxes.	
	• Coral reef - In this biome, the reef is formed from the skeletons of coral animals. These are found in shallow, tropical waters. A healthy coral reef is home to a large variety of animals including corals, anemones, fish, and shellfish. These organisms are adapted to warm, relatively shallow salt water.	
12.D recognize that	How is the long term survival of species affected by their resource base?	
long-term survival of	The long term survival of organisms depends on the resources supplied by their environment.	
species is dependent on changing resource bases that are limited	Resources are necessities for sustaining life- food, water, air, space. These help organisms survive and reproduce.	
	In any environment, most resources are limited and their availability can change over time. Without enough resources, the species may die out or become extinct.	
	 Without enough resources, the species may die out or become extinct. Population size is influenced by the following factors- Competition 	
	 Without enough resources, the species may die out or become extinct. Population size is influenced by the following factors- Competition Predation 	
	 Without enough resources, the species may die out or become extinct. Population size is influenced by the following factors- Competition 	
	 Without enough resources, the species may die out or become extinct. Population size is influenced by the following factors- Competition Predation Parasitism and disease 	
	 Without enough resources, the species may die out or become extinct. Population size is influenced by the following factors- Competition Predation Parasitism and disease Drought and other climate extremes Human disturbances 	
	 Without enough resources, the species may die out or become extinct. Population size is influenced by the following factors- Competition Predation Parasitism and disease Drought and other climate extremes 	
	 Without enough resources, the species may die out or become extinct. Population size is influenced by the following factors- Competition Predation Parasitism and disease Drought and other climate extremes Human disturbances What can change the resource bases of an environment? A sudden change to the environment can cause a rapid extinction of many species. Ex: dinosaurs 	
	 Without enough resources, the species may die out or become extinct. Population size is influenced by the following factors- Competition Predation Parasitism and disease Drought and other climate extremes Human disturbances What can change the resource bases of an environment? A sudden change to the environment can cause a rapid extinction of many species. 	

	What currently affects the resource bases of species?			
	Resource bases have been changing drastically since the Industrial Revolution. All over the world,			
	land that was once used for wildlife is now used for farms, ranches, cities, and houses.			
	 Fresh water is diverted from wildlife habitats to areas where people grow cops and for homes and factories. As these resources are used for other purposes, fewer resources are available for wildlife. Pollution affects resource bases. Ex: BP Horizon Oil Spill in the Gulf of Mexico in 2010. Oil residue will remain in the wetlands and coastline of the south for many years to come and will impact species that live there. Many species are now endangered- soon to be extinct. Ex: Florida panther of the Everglades in Florida and the giant panda of bamboo forests in China. 			
				12.E describe the
flow of matter				
through the carbon	How does matter flow through the carbon cycle?			
and nitrogen cycles	Carbon makes up less than 1% of the Earth's crust and atmosphere, but all living thingsdepend on carbon			
and explain the	compounds.			
consequences of	The carbon cycle is a process that moves carbon between the atmosphere, the Earth's surface, and living things. Carbo			
disrupting these	is recycled through respiration, photosynthesis, fuel combustion, decomposition; carbon can be atmospheric or dissolved,			
cycles	or can be found in organic compounds within the body.			
	How does the carbon cycle works?			
	• In the atmosphere, carbon exists mostly as carbon dioxide. Carbon dioxide leaves the			
	atmosphere when it dissolves in water or is taken up by plants for photosynthesis.			
	• It is released in the atmosphere during cellular respiration, geologic processes such as			
	volcanic eruptions, and when fossil fuels or forests are burned.			
	Sunlight Auto and			
	CO ₂ cycle factory emissions			
	Photosynthesis			
	Plant respiration			
	Animal respiration			
	Animal			
	Organic carbon Animal respiration Boot			
	Animal respiration Decay organisms Dead organisms Dead organisms Decay			
	Organic carbon Animal respiration Root			
	Decay organisms Dead organisms and waste products			
	Decay organisms Dead organisms Root respiration			

What are some consequences of disruptions of the carbon cycle?

- Over the past 100 years, the levels of carbon dioxide in Earth's atmosphere have increased. Human activities such as the burning fossil fuels and forests are releasing carbon dioxide into the atmosphere at alarming rates and it is being released faster than it can be removed by natural processes.
- Increasing levels of carbon dioxide is a major contributing factor to the global climate change. Scientists say that increasing carbon dioxide which is a greenhouse gas that helps keep heat from leaving the atmosphere. The higher carbon dioxide levels are causing rising temperatures and climate change.
- The Greenhouse effect also affects the oceans. When CO₂ or carbon dioxide dissolves in water, carbonic acid forms which causes the water to become more acidic (acidification). This negatively affects marine organisms that have a low tolerance for changing pH levels.

How does the flow of matter flow through the nitrogen cycle?

Nitrogen gas makes up 78% of Earth's atmosphere. In the nitrogen cycle, nitrogen moves between the atmosphere, Earth's surface, and living things.

Nitrogen Cycle – producers take in nitrogen compounds in soil and pass to consumers that consume the producers; decomposers (bacteria) break down nitrogen compounds and release nitrogen gas to air or usable nitrogen so the soil. The nitrogen cycle involves the exchange of nitrogen between living things and their environment.

- Nitrogen gas is removed from the atmosphere by a process called nitrogen fixation. Nitrogen fixation is the process by which bacteria change nitrogen gas into a form that plants can use.
- Certain bacteria in the soil and water are able to fix nitrogen. Some of these bacteria live in the roots of certain plants. Lightning also fixes nitrogen.

	 In the soil, a variety of bacteria convert fixed nitrogen from one form to another. The result is a mixture of nitrogen compounds, including nitrates, nitrites, and ammonia compounds. Plants take ammonia and make amino acids. Bacteria in the soil break down the remains of dead plants and animals, providing more fixed nitrogen to the soil. The actions of denitrifying bacteria return nitrogen to the atmosphere. 	
1	What are some consequences of disruptions to the nitrogen cycle?	
(One problem	
	 To increase plant growth, farmers and gardeners mix nitrogen containing fertilizer into the soil. The fertilizer runoff can affect the balance of nitrogen in bodies of water. In a process called eutrophication, nitrogen dissolves in the body of water and stimulates the growth of plants and algae. When plants and algae die, the bacterial populations that feed on dead matter boom. These bacteria consume so much oxygen from water that fish and other aquatic animals cannot survive. Another problem Acid precipitation can also disrupt the nitrogen cycle. Acid precipitation can lead to the death of plants and animals by altering the pH levels of soil and water. It can also cause harmful metals from pipes to enter drinking water. 	

Process Standards (Underlying Processes and Mathematical Tools)

B.1.A demonstrate safe practices during laboratory and field investigations

B.1.B demonstrate an understanding of the use and conservation of resources and the proper disposal or recycling of materials

B.2.A know the definition of science and understand that it has limitations, as specified in chapter 112.34, subsection (b)(2) of 19 TAC

B.2.B know that hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power which have been tested over a wide variety of conditions are incorporated into theories

B.2.C know scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well-established and highlyreliable explanations, but they may be subject to change as new areas of science and new technologies are developed;

B.2.D distinguish between scientific hypotheses and scientific theories

B.2.E plan and implement descriptive, comparative, and experimental investigations, including asking questions, formulating testable hypotheses, and selecting equipment and technology

B.2.F collect and organize qualitative and quantitative data and make measurements with accuracy and precision using tools such as calculators, spreadsheet software, data-collecting probes, computers, standard laboratory glassware, microscopes, various prepared slides, stereoscopes, metric rulers, electronic balances, gel electrophoresis apparatuses, micropipettors, hand lenses, Celsius thermometers, hot plates, lab notebooks or journals, timing devices, cameras, Petri dishes, lab incubators, dissection equipment, meter sticks, and models, diagrams, or samples of biological specimens or structures

B.2.G analyze, evaluate, make inferences, and predict trends from data

B.2.H communicate valid conclusions supported by the data through methods such as lab reports, labeled drawings, graphic organizers, journals, summaries, oral reports, and technology-based reports

B.3.A in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student

B.3.B communicate and apply scientific information extracted from various sources such as current events,

Process Standards (Underlying Processes and Mathematical Tools)

news reports, published journal articles, and marketing materials

B.3.C draw inferences based on data related to promotional materials for products and services

B.3.D evaluate the impact of scientific research on society and the environment

B.3.E evaluate models according to their limitations in representing biological objects or events

B.3.F research and describe the history of biology and contributions of scientists